Highly Localized intracellular Ca2+ signals promote optimal salivary gland fluid secretion

  1. Takahiro Takano
  2. Amanda Wahl
  3. Kai-Ting Huang
  4. Takanori Narita
  5. John Rugis
  6. James Sneyd
  7. David I Yule  Is a corresponding author
  1. University of Rochester School of Medicine and Dentistry, United States
  2. U. Rochester, United States
  3. Nihon University, Japan
  4. University of Auckland, New Zealand

Abstract

Salivary fluid secretion involves an intricate choreography of membrane transporters to result in the trans-epithelial movement of NaCl and water into the acinus lumen. Current models are largely based on experimental observations in enzymatically isolated cells where the Ca2+ signal invariably propagates globally and thus appears ideally suited to activate spatially separated Cl and K channels, present on the apical and basolateral plasma membrane, respectively. We monitored Ca2+ signals and salivary secretion in live mice expressing GCamp6F, following stimulation of the nerves innervating the submandibular gland. Consistent with in vitro studies, Ca2+ signals were initiated in the apical endoplasmic reticulum. In marked contrast to in vitro data, highly localized trains of Ca2+ transients that failed to fully propagate from the apical region were observed. Following stimuli optimum for secretion, large apical-basal gradients were elicited. A new mathematical model, incorporating these data was constructed to probe how salivary secretion can be optimally stimulated by apical Ca2+ signals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2,3,4,5,6,9,10,11

Article and author information

Author details

  1. Takahiro Takano

    Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Amanda Wahl

    Pharmacology and Physiology, U. Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kai-Ting Huang

    Pharmacology and Physiology, U. Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Takanori Narita

    Nihon University, Fujisawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. John Rugis

    Mathematics, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8009-4152
  6. James Sneyd

    Mathematics, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  7. David I Yule

    Pharmacology and Physiology, U. Rochester, Rochester, United States
    For correspondence
    david_yule@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6743-0668

Funding

National Institute of Dental and Craniofacial Research (DE019245)

  • David I Yule

National Institute of Dental and Craniofacial Research (DE014756)

  • David I Yule

Marsden Fund

  • James Sneyd

National Institute of Dental and Craniofacial Research (F31 DE030670)

  • Amanda Wahl

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard S Lewis, Stanford University School of Medicine, United States

Ethics

Animal experimentation: All animal procedures were approved by University Committee on Animal Resources (UCAR-2001-214E)

Version history

  1. Received: December 31, 2020
  2. Preprint posted: January 1, 2021 (view preprint)
  3. Accepted: July 8, 2021
  4. Accepted Manuscript published: July 9, 2021 (version 1)
  5. Version of Record published: August 9, 2021 (version 2)

Copyright

© 2021, Takano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,548
    views
  • 215
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Takahiro Takano
  2. Amanda Wahl
  3. Kai-Ting Huang
  4. Takanori Narita
  5. John Rugis
  6. James Sneyd
  7. David I Yule
(2021)
Highly Localized intracellular Ca2+ signals promote optimal salivary gland fluid secretion
eLife 10:e66170.
https://doi.org/10.7554/eLife.66170

Share this article

https://doi.org/10.7554/eLife.66170

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.