Conformational dynamics of auto-inhibition in the ER calcium sensor STIM1

  1. Stijn van Dorp
  2. Ruoyi Qiu
  3. Ucheor B Choi
  4. Minnie M Wu
  5. Michelle Yen
  6. Michael Kirmiz
  7. Axel T Brunger
  8. Richard S Lewis  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. West Virginia University School of Medicine, United States
  3. Stanford University School of Medicine, Howard Hughes Medical Institute, United States

Abstract

The dimeric ER Ca2+ sensor STIM1 controls store-operated Ca2+ entry (SOCE) through the regulated binding of its CRAC activation domain (CAD) to Orai channels in the plasma membrane. In resting cells, the STIM1 CC1 domain interacts with CAD to suppress SOCE, but the structural basis of this interaction is unclear. Using single-molecule Förster resonance energy transfer (smFRET) and protein crosslinking approaches, we show that CC1 interacts dynamically with CAD in a domain-swapped configuration with an orientation predicted to sequester its Orai-binding region adjacent to the ER membrane. Following ER Ca2+ depletion and release from CAD, cysteine crosslinking indicates that the two CC1 domains become closely paired along their entire length in the active Orai-bound state. These findings provide a structural basis for the dual roles of CC1: sequestering CAD to suppress SOCE in resting cells and propelling it towards the plasma membrane to activate Orai and SOCE after store depletion.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figure 1 - figure supplement 1-3, Figure 2 - figure supplement 1, Figure 3 - figure supplement 1, Figure 4 - figure supplement 1, Figure 5 - figure supplement 1, Figure 5 - figure supplement 2, Figure 5 - figure supplement 3, Figure 7, Figure 7 - figure supplement 1, and Figure 7 - figure supplement 2.Custom code used to analyze smFRET data is available at https://github.com/vandorp/stim1_paper

Article and author information

Author details

  1. Stijn van Dorp

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9940-7163
  2. Ruoyi Qiu

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Ucheor B Choi

    Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1541-2967
  4. Minnie M Wu

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Michelle Yen

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Michael Kirmiz

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  7. Axel T Brunger

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Howard Hughes Medical Institute, Stanford, United States
    Competing interests
    Axel T Brunger, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5121-2036
  8. Richard S Lewis

    Immunology Program and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    rslewis@stanford.edu
    Competing interests
    Richard S Lewis, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6010-7403

Funding

National Institutes of Health (R37GM45374)

  • Richard S Lewis

Mathers Charitable Foundation

  • Richard S Lewis

Stanford University (Discovery Innovation Award)

  • Richard S Lewis

National Institutes of Health (R37MH63105)

  • Axel T Brunger

Dutch Research Council NWO (Rubicon postdoctoral fellowship 825.13.027)

  • Stijn van Dorp

American Heart Association (postdoctoral fellowship 16POST30780015)

  • Stijn van Dorp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marcel P Goldschen-Ohm, University of Texas at Austin, United States

Version history

  1. Preprint posted: December 18, 2020 (view preprint)
  2. Received: January 2, 2021
  3. Accepted: October 18, 2021
  4. Accepted Manuscript published: November 3, 2021 (version 1)
  5. Version of Record published: December 7, 2021 (version 2)

Copyright

© 2021, van Dorp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,342
    views
  • 265
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stijn van Dorp
  2. Ruoyi Qiu
  3. Ucheor B Choi
  4. Minnie M Wu
  5. Michelle Yen
  6. Michael Kirmiz
  7. Axel T Brunger
  8. Richard S Lewis
(2021)
Conformational dynamics of auto-inhibition in the ER calcium sensor STIM1
eLife 10:e66194.
https://doi.org/10.7554/eLife.66194

Share this article

https://doi.org/10.7554/eLife.66194

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, Brachydactyly B and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Claudia D Consalvo, Adedeji M Aderounmu ... Brenda L Bass
    Research Article

    Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1’s helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.