Conformational dynamics of auto-inhibition in the ER calcium sensor STIM1

  1. Stijn van Dorp
  2. Ruoyi Qiu
  3. Ucheor B Choi
  4. Minnie M Wu
  5. Michelle Yen
  6. Michael Kirmiz
  7. Axel T Brunger
  8. Richard S Lewis  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. West Virginia University School of Medicine, United States
  3. Stanford University School of Medicine, Howard Hughes Medical Institute, United States

Abstract

The dimeric ER Ca2+ sensor STIM1 controls store-operated Ca2+ entry (SOCE) through the regulated binding of its CRAC activation domain (CAD) to Orai channels in the plasma membrane. In resting cells, the STIM1 CC1 domain interacts with CAD to suppress SOCE, but the structural basis of this interaction is unclear. Using single-molecule Förster resonance energy transfer (smFRET) and protein crosslinking approaches, we show that CC1 interacts dynamically with CAD in a domain-swapped configuration with an orientation predicted to sequester its Orai-binding region adjacent to the ER membrane. Following ER Ca2+ depletion and release from CAD, cysteine crosslinking indicates that the two CC1 domains become closely paired along their entire length in the active Orai-bound state. These findings provide a structural basis for the dual roles of CC1: sequestering CAD to suppress SOCE in resting cells and propelling it towards the plasma membrane to activate Orai and SOCE after store depletion.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figure 1 - figure supplement 1-3, Figure 2 - figure supplement 1, Figure 3 - figure supplement 1, Figure 4 - figure supplement 1, Figure 5 - figure supplement 1, Figure 5 - figure supplement 2, Figure 5 - figure supplement 3, Figure 7, Figure 7 - figure supplement 1, and Figure 7 - figure supplement 2.Custom code used to analyze smFRET data is available at https://github.com/vandorp/stim1_paper

Article and author information

Author details

  1. Stijn van Dorp

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9940-7163
  2. Ruoyi Qiu

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Ucheor B Choi

    Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1541-2967
  4. Minnie M Wu

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Michelle Yen

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Michael Kirmiz

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  7. Axel T Brunger

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Howard Hughes Medical Institute, Stanford, United States
    Competing interests
    Axel T Brunger, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5121-2036
  8. Richard S Lewis

    Immunology Program and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    rslewis@stanford.edu
    Competing interests
    Richard S Lewis, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6010-7403

Funding

National Institutes of Health (R37GM45374)

  • Richard S Lewis

Mathers Charitable Foundation

  • Richard S Lewis

Stanford University (Discovery Innovation Award)

  • Richard S Lewis

National Institutes of Health (R37MH63105)

  • Axel T Brunger

Dutch Research Council NWO (Rubicon postdoctoral fellowship 825.13.027)

  • Stijn van Dorp

American Heart Association (postdoctoral fellowship 16POST30780015)

  • Stijn van Dorp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, van Dorp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,485
    views
  • 286
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stijn van Dorp
  2. Ruoyi Qiu
  3. Ucheor B Choi
  4. Minnie M Wu
  5. Michelle Yen
  6. Michael Kirmiz
  7. Axel T Brunger
  8. Richard S Lewis
(2021)
Conformational dynamics of auto-inhibition in the ER calcium sensor STIM1
eLife 10:e66194.
https://doi.org/10.7554/eLife.66194

Share this article

https://doi.org/10.7554/eLife.66194

Further reading

    1. Structural Biology and Molecular Biophysics
    Liliana R Teixeira, Radha Akella ... Elizabeth J Goldsmith
    Research Article

    Osmotic stress and chloride regulate the autophosphorylation and activity of the WNK1 and WNK3 kinase domains. The kinase domain of unphosphorylated WNK1 (uWNK1) is an asymmetric dimer possessing water molecules conserved in multiple uWNK1 crystal structures. Conserved waters are present in two networks, referred to here as conserved water networks 1 and 2 (CWN1 and CWN2). Here, we show that PEG400 applied to crystals of dimeric uWNK1 induces de-dimerization. Both the WNK1 the water networks and the chloride-binding site are disrupted by PEG400. CWN1 is surrounded by a cluster of pan-WNK-conserved charged residues. Here, we mutagenized these charges in WNK3, a highly active WNK isoform kinase domain, and WNK1, the isoform best studied crystallographically. Mutation of E314 in the Activation Loop of WNK3 (WNK3/E314Q and WNK3/E314A, and the homologous WNK1/E388A) enhanced the rate of autophosphorylation, and reduced chloride sensitivity. Other WNK3 mutants reduced the rate of autophosphorylation activity coupled with greater chloride sensitivity than wild-type. The water and chloride regulation thus appear linked. The lower activity of some mutants may reflect effects on catalysis. Crystallography showed that activating mutants introduced conformational changes in similar parts of the structure to those induced by PEG400. WNK activating mutations and crystallography support a role for CWN1 in WNK inhibition consistent with water functioning as an allosteric ligand.

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.