Conformational dynamics of auto-inhibition in the ER calcium sensor STIM1

  1. Stijn van Dorp
  2. Ruoyi Qiu
  3. Ucheor B Choi
  4. Minnie M Wu
  5. Michelle Yen
  6. Michael Kirmiz
  7. Axel T Brunger
  8. Richard S Lewis  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. West Virginia University School of Medicine, United States
  3. Stanford University School of Medicine, Howard Hughes Medical Institute, United States

Abstract

The dimeric ER Ca2+ sensor STIM1 controls store-operated Ca2+ entry (SOCE) through the regulated binding of its CRAC activation domain (CAD) to Orai channels in the plasma membrane. In resting cells, the STIM1 CC1 domain interacts with CAD to suppress SOCE, but the structural basis of this interaction is unclear. Using single-molecule Förster resonance energy transfer (smFRET) and protein crosslinking approaches, we show that CC1 interacts dynamically with CAD in a domain-swapped configuration with an orientation predicted to sequester its Orai-binding region adjacent to the ER membrane. Following ER Ca2+ depletion and release from CAD, cysteine crosslinking indicates that the two CC1 domains become closely paired along their entire length in the active Orai-bound state. These findings provide a structural basis for the dual roles of CC1: sequestering CAD to suppress SOCE in resting cells and propelling it towards the plasma membrane to activate Orai and SOCE after store depletion.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figure 1 - figure supplement 1-3, Figure 2 - figure supplement 1, Figure 3 - figure supplement 1, Figure 4 - figure supplement 1, Figure 5 - figure supplement 1, Figure 5 - figure supplement 2, Figure 5 - figure supplement 3, Figure 7, Figure 7 - figure supplement 1, and Figure 7 - figure supplement 2.Custom code used to analyze smFRET data is available at https://github.com/vandorp/stim1_paper

Article and author information

Author details

  1. Stijn van Dorp

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9940-7163
  2. Ruoyi Qiu

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Ucheor B Choi

    Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1541-2967
  4. Minnie M Wu

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Michelle Yen

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Michael Kirmiz

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  7. Axel T Brunger

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Howard Hughes Medical Institute, Stanford, United States
    Competing interests
    Axel T Brunger, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5121-2036
  8. Richard S Lewis

    Immunology Program and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    rslewis@stanford.edu
    Competing interests
    Richard S Lewis, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6010-7403

Funding

National Institutes of Health (R37GM45374)

  • Richard S Lewis

Mathers Charitable Foundation

  • Richard S Lewis

Stanford University (Discovery Innovation Award)

  • Richard S Lewis

National Institutes of Health (R37MH63105)

  • Axel T Brunger

Dutch Research Council NWO (Rubicon postdoctoral fellowship 825.13.027)

  • Stijn van Dorp

American Heart Association (postdoctoral fellowship 16POST30780015)

  • Stijn van Dorp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, van Dorp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,488
    views
  • 287
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stijn van Dorp
  2. Ruoyi Qiu
  3. Ucheor B Choi
  4. Minnie M Wu
  5. Michelle Yen
  6. Michael Kirmiz
  7. Axel T Brunger
  8. Richard S Lewis
(2021)
Conformational dynamics of auto-inhibition in the ER calcium sensor STIM1
eLife 10:e66194.
https://doi.org/10.7554/eLife.66194

Share this article

https://doi.org/10.7554/eLife.66194

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Lingzhi Gao, Dian Chen, Yu Liu
    Research Article

    Riboswitches represent a class of non-coding RNA that possess the unique ability to specifically bind ligands and, in response, regulate gene expression. A recent report unveiled a type of riboswitch, known as the guanidine-IV riboswitch, which responds to guanidine levels to regulate downstream genetic transcription. However, the precise molecular mechanism through which the riboswitch senses its target ligand and undergoes conformational changes remain elusive. This gap in understanding has impeded the potential applications of this riboswitch. To bridge this knowledge gap, our study investigated the conformational dynamics of the guanidine-IV riboswitch RNA upon ligand binding. We employed single-molecule fluorescence resonance energy transfer (smFRET) to dissect the behaviors of the aptamer, terminator, and full-length riboswitch. Our findings indicated that the aptamer portion exhibited higher sensitivity to guanidine compared to the terminator and full-length constructs. Additionally, we utilized Position-specific Labelling of RNA (PLOR) combined with smFRET to observe, at the single-nucleotide and single-molecule level, the structural transitions experienced by the guanidine-IV riboswitch during transcription. Notably, we discovered that the influence of guanidine on the riboswitch RNA’s conformations was significantly reduced after the transcription of 88 nucleotides. Furthermore, we proposed a folding model for the guanidine-IV riboswitch in the absence and presence of guanidine, thereby providing insights into its ligand-response mechanism.

    1. Structural Biology and Molecular Biophysics
    Liliana R Teixeira, Radha Akella ... Elizabeth J Goldsmith
    Research Article

    Osmotic stress and chloride regulate the autophosphorylation and activity of the WNK1 and WNK3 kinase domains. The kinase domain of unphosphorylated WNK1 (uWNK1) is an asymmetric dimer possessing water molecules conserved in multiple uWNK1 crystal structures. Conserved waters are present in two networks, referred to here as conserved water networks 1 and 2 (CWN1 and CWN2). Here, we show that PEG400 applied to crystals of dimeric uWNK1 induces de-dimerization. Both the WNK1 the water networks and the chloride-binding site are disrupted by PEG400. CWN1 is surrounded by a cluster of pan-WNK-conserved charged residues. Here, we mutagenized these charges in WNK3, a highly active WNK isoform kinase domain, and WNK1, the isoform best studied crystallographically. Mutation of E314 in the Activation Loop of WNK3 (WNK3/E314Q and WNK3/E314A, and the homologous WNK1/E388A) enhanced the rate of autophosphorylation, and reduced chloride sensitivity. Other WNK3 mutants reduced the rate of autophosphorylation activity coupled with greater chloride sensitivity than wild-type. The water and chloride regulation thus appear linked. The lower activity of some mutants may reflect effects on catalysis. Crystallography showed that activating mutants introduced conformational changes in similar parts of the structure to those induced by PEG400. WNK activating mutations and crystallography support a role for CWN1 in WNK inhibition consistent with water functioning as an allosteric ligand.