Antimicrobials from a feline commensal bacterium inhibit skin infection by drug-resistant S. pseudintermedius

  1. Alan M O'Neill
  2. Kate A Worthing
  3. Nikhil Kulkarni
  4. Fengwu Li
  5. Teruaki Nakatsuji
  6. Dominic McGrosso
  7. Robert H Mills
  8. Gayathri Kalla
  9. Joyce Y Cheng
  10. Jacqueline M Norris
  11. Kit Pogliano
  12. Joe Pogliano
  13. David J Gonzalez
  14. Richard L Gallo  Is a corresponding author
  1. University of California San Diego, United States
  2. University of Arizona, United States
  3. University of Sydney, Australia
  4. University of California, San Diego, United States

Abstract

Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an important emerging zoonotic pathogen that causes severe skin infections. To combat infections from drug-resistant bacteria, the transplantation of commensal antimicrobial bacteria as a therapeutic has shown clinical promise. We screened a collection of diverse staphylococcus species from domestic dogs and cats for antimicrobial activity against MRSP. A unique strain (S. felis C4) was isolated from feline skin that inhibited MRSP and multiple gram-positive pathogens. Whole genome sequencing and mass spectrometry revealed several secreted antimicrobials including a thiopeptide bacteriocin micrococcin P1 and phenol-soluble modulin beta (PSMβ) peptides that exhibited antimicrobial and anti-inflammatory activity. Fluorescence and electron microscopy revealed that S. felis antimicrobials inhibited translation and disrupted bacterial but not eukaryotic cell membranes. Competition experiments in mice showed that S. felis significantly reduced MRSP skin colonization and an antimicrobial extract from S. felis significantly reduced necrotic skin injury from MRSP infection. These findings indicate a feline commensal bacterium that could be utilized in bacteriotherapy against difficult-to-treat animal and human skin infections.

Data availability

The RNA Sequencing data has been deposited in Dryad with a unique DOI identifier provided:doi:10.6076/D10019

The following data sets were generated

Article and author information

Author details

  1. Alan M O'Neill

    Dermatology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5892-6477
  2. Kate A Worthing

    Veterinary Medicine, University of Arizona, Arizona, United States
    Competing interests
    Kate A Worthing, Dr. Worthing is a co-inventor of technology described in this manuscript that has been disclosed to the University of California San Diego..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8713-7189
  3. Nikhil Kulkarni

    Dermatology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  4. Fengwu Li

    Dermatology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  5. Teruaki Nakatsuji

    Dermatology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  6. Dominic McGrosso

    Dermatology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  7. Robert H Mills

    Pharmacology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  8. Gayathri Kalla

    Pharmacology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  9. Joyce Y Cheng

    Dermatology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  10. Jacqueline M Norris

    Veterinary Science, University of Sydney, Sydney, Australia
    Competing interests
    No competing interests declared.
  11. Kit Pogliano

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7868-3345
  12. Joe Pogliano

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  13. David J Gonzalez

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  14. Richard L Gallo

    Dermatology, University of California San Diego, San Diego, United States
    For correspondence
    rgallo@health.ucsd.edu
    Competing interests
    Richard L Gallo, is a co-founder, scientific advisor, consultant and has equity in MatriSys Biosciences and is a consultant, receives income and has equity in Sente.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1401-7861

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (T32 DK007202)

  • Robert H Mills

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving live animal work were performed in accordance with the approval of the University of California, San Diego Institutional Animal Care and Use Guidelines (protocol no. S09074)

Copyright

© 2021, O'Neill et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,778
    views
  • 547
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alan M O'Neill
  2. Kate A Worthing
  3. Nikhil Kulkarni
  4. Fengwu Li
  5. Teruaki Nakatsuji
  6. Dominic McGrosso
  7. Robert H Mills
  8. Gayathri Kalla
  9. Joyce Y Cheng
  10. Jacqueline M Norris
  11. Kit Pogliano
  12. Joe Pogliano
  13. David J Gonzalez
  14. Richard L Gallo
(2021)
Antimicrobials from a feline commensal bacterium inhibit skin infection by drug-resistant S. pseudintermedius
eLife 10:e66793.
https://doi.org/10.7554/eLife.66793

Share this article

https://doi.org/10.7554/eLife.66793

Further reading

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article Updated

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS’s antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium’s own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.

    1. Microbiology and Infectious Disease
    Han Kang Tee, Simon Crouzet ... Caroline Tapparel
    Research Article Updated

    Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as the model and demonstrated that, unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167 G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that the acquisition of capsid mutations conferring affinity for HS comes together with decreased capsid stability and allows EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.