Antimicrobials from a feline commensal bacterium inhibit skin infection by drug-resistant S. pseudintermedius

  1. Alan M O'Neill
  2. Kate A Worthing
  3. Nikhil Kulkarni
  4. Fengwu Li
  5. Teruaki Nakatsuji
  6. Dominic McGrosso
  7. Robert H Mills
  8. Gayathri Kalla
  9. Joyce Y Cheng
  10. Jacqueline M Norris
  11. Kit Pogliano
  12. Joe Pogliano
  13. David J Gonzalez
  14. Richard L Gallo  Is a corresponding author
  1. University of California San Diego, United States
  2. University of Arizona, United States
  3. University of Sydney, Australia
  4. University of California, San Diego, United States

Abstract

Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is an important emerging zoonotic pathogen that causes severe skin infections. To combat infections from drug-resistant bacteria, the transplantation of commensal antimicrobial bacteria as a therapeutic has shown clinical promise. We screened a collection of diverse staphylococcus species from domestic dogs and cats for antimicrobial activity against MRSP. A unique strain (S. felis C4) was isolated from feline skin that inhibited MRSP and multiple gram-positive pathogens. Whole genome sequencing and mass spectrometry revealed several secreted antimicrobials including a thiopeptide bacteriocin micrococcin P1 and phenol-soluble modulin beta (PSMβ) peptides that exhibited antimicrobial and anti-inflammatory activity. Fluorescence and electron microscopy revealed that S. felis antimicrobials inhibited translation and disrupted bacterial but not eukaryotic cell membranes. Competition experiments in mice showed that S. felis significantly reduced MRSP skin colonization and an antimicrobial extract from S. felis significantly reduced necrotic skin injury from MRSP infection. These findings indicate a feline commensal bacterium that could be utilized in bacteriotherapy against difficult-to-treat animal and human skin infections.

Data availability

The RNA Sequencing data has been deposited in Dryad with a unique DOI identifier provided:doi:10.6076/D10019

The following data sets were generated

Article and author information

Author details

  1. Alan M O'Neill

    Dermatology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5892-6477
  2. Kate A Worthing

    Veterinary Medicine, University of Arizona, Arizona, United States
    Competing interests
    Kate A Worthing, Dr. Worthing is a co-inventor of technology described in this manuscript that has been disclosed to the University of California San Diego..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8713-7189
  3. Nikhil Kulkarni

    Dermatology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  4. Fengwu Li

    Dermatology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  5. Teruaki Nakatsuji

    Dermatology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  6. Dominic McGrosso

    Dermatology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  7. Robert H Mills

    Pharmacology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  8. Gayathri Kalla

    Pharmacology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  9. Joyce Y Cheng

    Dermatology, University of California San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  10. Jacqueline M Norris

    Veterinary Science, University of Sydney, Sydney, Australia
    Competing interests
    No competing interests declared.
  11. Kit Pogliano

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7868-3345
  12. Joe Pogliano

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  13. David J Gonzalez

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  14. Richard L Gallo

    Dermatology, University of California San Diego, San Diego, United States
    For correspondence
    rgallo@health.ucsd.edu
    Competing interests
    Richard L Gallo, is a co-founder, scientific advisor, consultant and has equity in MatriSys Biosciences and is a consultant, receives income and has equity in Sente.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1401-7861

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (T32 DK007202)

  • Robert H Mills

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sophie Helaine, Harvard Medical School, United States

Ethics

Animal experimentation: All experiments involving live animal work were performed in accordance with the approval of the University of California, San Diego Institutional Animal Care and Use Guidelines (protocol no. S09074)

Version history

  1. Received: January 22, 2021
  2. Preprint posted: March 8, 2021 (view preprint)
  3. Accepted: October 2, 2021
  4. Accepted Manuscript published: October 19, 2021 (version 1)
  5. Version of Record published: October 21, 2021 (version 2)

Copyright

© 2021, O'Neill et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,552
    views
  • 515
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alan M O'Neill
  2. Kate A Worthing
  3. Nikhil Kulkarni
  4. Fengwu Li
  5. Teruaki Nakatsuji
  6. Dominic McGrosso
  7. Robert H Mills
  8. Gayathri Kalla
  9. Joyce Y Cheng
  10. Jacqueline M Norris
  11. Kit Pogliano
  12. Joe Pogliano
  13. David J Gonzalez
  14. Richard L Gallo
(2021)
Antimicrobials from a feline commensal bacterium inhibit skin infection by drug-resistant S. pseudintermedius
eLife 10:e66793.
https://doi.org/10.7554/eLife.66793

Share this article

https://doi.org/10.7554/eLife.66793

Further reading

    1. Microbiology and Infectious Disease
    Hina Khan, Partha Paul ... Dibyendu Sarkar
    Research Article

    Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3′,5′-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.