Osteoporotic Fracture: Bone age is not just for kids

More informed discussions between physicians and older adults about the consequences of an initial osteoporotic fracture could encourage more patients to consider treatments that protect against future fracture.
  1. Jane A Cauley  Is a corresponding author
  2. Dolores M Shoback
  1. Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, United States
  2. Endocrine Research Unit, San Francisco Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, United States

Chronological age and "bone age" are the same in most people, but sometimes they are different. For decades pediatricians have used bone age – which can be estimated from X-rays – as a tool to assess health and development in children (Creo and Schwenk, 2017). For physicians treating the elderly, improved methods for estimating bone age of older adults would be helpful when assessing the risk of osteoporotic fractures: this is important because osteoporosis is under-diagnosed, under-treated and under-appreciated as a factor that influences both life expectancy and quality of life. Now, in eLife, Thao Phuong Ho-Le, Tuan Nguyen and colleagues at the Garvan Institute of Medical Research in Sydney and other institutions in Australia and Viet Nam report that they have developed a model that can estimate bone age in older adults and provide improved estimates of the risks of subsequent osteoporotic fractures and death following an initial fracture (Ho-Le et al., 2021).

The data come from a well-established population-based study, the Dubbo Osteoporosis Epidemiology Study, which has been following around 3500 men and women in Dubbo, a city in south-west Australia, who were 60 or over in 1989. Ho-Le et al. developed a multi-state model to provide prediction estimates for fracture, refracture and death. In this model individuals can be in one of five states – no fracture, first fracture, second fracture, third fracture and death – and can transition through all five states, or move directly from any of the first four states to death. Ho-Le et al. report that, during the 20 year follow-up, the risk of a second fracture was higher in women (36%) than in men (22%), but the mortality risk was higher in men (41%) than women (25%). The risk of transitioning from any state to death was also much higher in men than women.

As mentioned above, chronological age and bone age are usually the same. But given a low bone mineral density coupled with other risk factors for fracture, the age of your bones can be greater than your chronological age. Physicians use a tool called the Fracture Risk Assessment tool (FRAX) to decide if a patient should receive treatment to protect against osteoporotic fractures: in general, if the probability of hip fracture over the next ten years is 3% or higher, or if the risk of a major osteoporotic fracture (that is, a fracture to the spine, forearm, hip or shoulder) is 20% or higher, treatment is recommended. While the 3% risk threshold for hip fracture prevention was deemed cost-effective when FRAX was developed (Tosteson et al., 2008), a patient might think: "But I have a 97% chance of not fracturing". However, if the physician could reply, "You may be 70, but you have the bones of an 80 year old", the patient may be more willing to consider treatment.

The results of this study are important for other reasons. Existing risk assessment tools do not take into account the increased chances of further fractures, let alone death (Rubin et al., 2013), but the model developed by Ho-Le et al. can estimate the 5 year individual probability of transitioning from no fracture to fracture or to death. For example, for a 70-year-old woman with low bone mineral density but no other risk factors, the probability of transitioning from no fracture to first fracture (10%) was similar to the risk of death (8.6%). However, once she experiences a first fracture, the risk of another fracture goes up dramatically (16.5%) and exceeds the risk of dying (10.4%). With this information, the patient may be more likely to consider treatment.

There are several unanswered questions and inherent limitations. Older folks fear institutionalization, so the possibility of transitioning to disability outcomes and assisted living could be added to the model. The Dubbo study is also a single cohort from one city, so the model needs to be validated in cohorts around the world. Moreover, since Dubbo residents are 98% white, the model needs to be tested in other race/ethnicities. Lastly, the model is only adjusted for comorbidities at baseline. It is highly likely that the participants developed other chronic diseases over the 20 year follow-up, but such diseases are not included in the model, so the risk of refracture and death may have been underestimated.

Screening for high-risk patients who may benefit from therapy is important because prevention of future fractures and their consequences is possible with the armamentarium of treatments that are available. Future pragmatic randomized clinical trials are needed to test whether screening in the community, using this type of multistate model, can increase treatment rates and ultimately reduce fractures and their consequences.

References

Article and author information

Author details

  1. Jane A Cauley

    Jane A Cauley is in the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, United States

    For correspondence
    jcauley@edc.pitt.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0752-4408
  2. Dolores M Shoback

    Dolores M Shoback is in the Endocrine Research Unit, San Francisco Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, United States

    Competing interests
    No competing interests declared

Publication history

  1. Version of Record published: March 2, 2021 (version 1)

Copyright

© 2021, Cauley and Shoback

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 363
    Page views
  • 19
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jane A Cauley
  2. Dolores M Shoback
(2021)
Osteoporotic Fracture: Bone age is not just for kids
eLife 10:e66916.
https://doi.org/10.7554/eLife.66916
  1. Further reading

Further reading

    1. Epidemiology and Global Health
    Susan L Parker, Ashish A Deshmukh ... Jane R Montealegre
    Research Article

    Background: Home-based self-sampling for human papillomavirus (HPV) testing may be an alternative for women not attending clinic-based cervical cancer screening.

    Methods: We assessed barriers to care and motivators to use at-home HPV self-sampling kits during the COVID-19 pandemic as part of a randomized controlled trial evaluating kit effectiveness. Participants were women aged 30-65 and under-screened for cervical cancer in a safety-net healthcare system. We conducted telephone surveys in English/Spanish among a subgroup of trial participants, assessed differences between groups, and determined statistical significance at p<0.05.

    Results: Over half of 233 survey participants reported that clinic-based screening (Pap) is uncomfortable (67.8%), embarrassing (52.4%), and discomfort seeing male providers (63.1%). The last two factors were significantly more prevalent among Spanish versus English speakers (66.4% vs. 30% (p=0.000) and 69.9 vs. 52.2% (p=0.006), respectively). Most women who completed the kit found Pap more embarrassing (69.3%), stressful (55.6%), and less convenient (55.6%) than the kit. The first factor was more prevalent among Spanish versus English speakers (79.6% vs. 53.38%, p=0.001) and among patients with elementary education or below.

    Conclusions: The COVID-19 pandemic influenced most (59.5%) to participate in the trial due to fear of COVID, difficulty making appointments, and ease of using kits. HPV self-sampling kits may reduce barriers among under-screened women in a safety-net system.

    Funding: This study is supported by a grant from the National Institute for Minority Health and Health Disparities (NIMHD, R01MD013715, PI: JR Montealegre).

    Clinical trial number: NCT03898167.

    1. Epidemiology and Global Health
    Irene Man, Damien Georges ... Iacopo Baussano
    Research Article

    Local cervical cancer epidemiological data essential to project the context-specific impact of cervical cancer preventive measures are often missing. We developed a framework, hereafter named Footprinting, to approximate missing data on sexual behaviour, human papillomavirus (HPV) prevalence, or cervical cancer incidence, and applied it to an Indian case study. With our framework, we (1) identified clusters of Indian states with similar cervical cancer incidence patterns, (2) classified states without incidence data to the identified clusters based on similarity in sexual behaviour, (3) approximated missing cervical cancer incidence and HPV prevalence data based on available data within each cluster. Two main patterns of cervical cancer incidence, characterized by high and low incidence, were identified. Based on the patterns in the sexual behaviour data, all Indian states with missing data on cervical cancer incidence were classified to the low-incidence cluster. Finally, missing data on cervical cancer incidence and HPV prevalence were approximated based on the mean of the available data within each cluster. With the Footprinting framework, we approximated missing cervical cancer epidemiological data and made context-specific impact projections for cervical cancer preventive measures, to assist public health decisions on cervical cancer prevention in India and other countries.