Osteoporotic Fracture: Bone age is not just for kids

More informed discussions between physicians and older adults about the consequences of an initial osteoporotic fracture could encourage more patients to consider treatments that protect against future fracture.
  1. Jane A Cauley  Is a corresponding author
  2. Dolores M Shoback
  1. Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, United States
  2. Endocrine Research Unit, San Francisco Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, United States

Chronological age and "bone age" are the same in most people, but sometimes they are different. For decades pediatricians have used bone age – which can be estimated from X-rays – as a tool to assess health and development in children (Creo and Schwenk, 2017). For physicians treating the elderly, improved methods for estimating bone age of older adults would be helpful when assessing the risk of osteoporotic fractures: this is important because osteoporosis is under-diagnosed, under-treated and under-appreciated as a factor that influences both life expectancy and quality of life. Now, in eLife, Thao Phuong Ho-Le, Tuan Nguyen and colleagues at the Garvan Institute of Medical Research in Sydney and other institutions in Australia and Viet Nam report that they have developed a model that can estimate bone age in older adults and provide improved estimates of the risks of subsequent osteoporotic fractures and death following an initial fracture (Ho-Le et al., 2021).

The data come from a well-established population-based study, the Dubbo Osteoporosis Epidemiology Study, which has been following around 3500 men and women in Dubbo, a city in south-west Australia, who were 60 or over in 1989. Ho-Le et al. developed a multi-state model to provide prediction estimates for fracture, refracture and death. In this model individuals can be in one of five states – no fracture, first fracture, second fracture, third fracture and death – and can transition through all five states, or move directly from any of the first four states to death. Ho-Le et al. report that, during the 20 year follow-up, the risk of a second fracture was higher in women (36%) than in men (22%), but the mortality risk was higher in men (41%) than women (25%). The risk of transitioning from any state to death was also much higher in men than women.

As mentioned above, chronological age and bone age are usually the same. But given a low bone mineral density coupled with other risk factors for fracture, the age of your bones can be greater than your chronological age. Physicians use a tool called the Fracture Risk Assessment tool (FRAX) to decide if a patient should receive treatment to protect against osteoporotic fractures: in general, if the probability of hip fracture over the next ten years is 3% or higher, or if the risk of a major osteoporotic fracture (that is, a fracture to the spine, forearm, hip or shoulder) is 20% or higher, treatment is recommended. While the 3% risk threshold for hip fracture prevention was deemed cost-effective when FRAX was developed (Tosteson et al., 2008), a patient might think: "But I have a 97% chance of not fracturing". However, if the physician could reply, "You may be 70, but you have the bones of an 80 year old", the patient may be more willing to consider treatment.

The results of this study are important for other reasons. Existing risk assessment tools do not take into account the increased chances of further fractures, let alone death (Rubin et al., 2013), but the model developed by Ho-Le et al. can estimate the 5 year individual probability of transitioning from no fracture to fracture or to death. For example, for a 70-year-old woman with low bone mineral density but no other risk factors, the probability of transitioning from no fracture to first fracture (10%) was similar to the risk of death (8.6%). However, once she experiences a first fracture, the risk of another fracture goes up dramatically (16.5%) and exceeds the risk of dying (10.4%). With this information, the patient may be more likely to consider treatment.

There are several unanswered questions and inherent limitations. Older folks fear institutionalization, so the possibility of transitioning to disability outcomes and assisted living could be added to the model. The Dubbo study is also a single cohort from one city, so the model needs to be validated in cohorts around the world. Moreover, since Dubbo residents are 98% white, the model needs to be tested in other race/ethnicities. Lastly, the model is only adjusted for comorbidities at baseline. It is highly likely that the participants developed other chronic diseases over the 20 year follow-up, but such diseases are not included in the model, so the risk of refracture and death may have been underestimated.

Screening for high-risk patients who may benefit from therapy is important because prevention of future fractures and their consequences is possible with the armamentarium of treatments that are available. Future pragmatic randomized clinical trials are needed to test whether screening in the community, using this type of multistate model, can increase treatment rates and ultimately reduce fractures and their consequences.

References

Article and author information

Author details

  1. Jane A Cauley

    Jane A Cauley is in the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, United States

    For correspondence
    jcauley@edc.pitt.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0752-4408
  2. Dolores M Shoback

    Dolores M Shoback is in the Endocrine Research Unit, San Francisco Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, United States

    Competing interests
    No competing interests declared

Publication history

  1. Version of Record published: March 2, 2021 (version 1)

Copyright

© 2021, Cauley and Shoback

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 405
    views
  • 20
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jane A Cauley
  2. Dolores M Shoback
(2021)
Osteoporotic Fracture: Bone age is not just for kids
eLife 10:e66916.
https://doi.org/10.7554/eLife.66916
  1. Further reading

Further reading

    1. Epidemiology and Global Health
    Sean V Connelly, Nicholas F Brazeau ... Jeffrey A Bailey
    Research Article

    Background:

    The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission.

    Methods:

    To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018.

    Results:

    Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes.

    Conclusions:

    Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors.

    Funding:

    This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article

    Background: Few national-level studies have evaluated the impact of 'hybrid' immunity (vaccination coupled with recovery from infection) from the Omicron variants of SARS-CoV-2.

    Methods: From May 2020 to December 2022, we conducted serial assessments (each of ~4000-9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results: Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than six months earlier, spike levels fell notably and continuously for the nine months post-vaccination. By contrast, among adults infected within six months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than six months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% CI 11-14%) before omicron to 78% (76-80%) by December 2022, equating to 25 million infected adults cumulatively. However, the COVID-19 weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions: Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected dried blood spots are a practicable biological surveillance platform.

    Funding: Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael's Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.