Osteoporotic Fracture: Bone age is not just for kids

More informed discussions between physicians and older adults about the consequences of an initial osteoporotic fracture could encourage more patients to consider treatments that protect against future fracture.
  1. Jane A Cauley  Is a corresponding author
  2. Dolores M Shoback
  1. Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, United States
  2. Endocrine Research Unit, San Francisco Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, United States

Chronological age and "bone age" are the same in most people, but sometimes they are different. For decades pediatricians have used bone age – which can be estimated from X-rays – as a tool to assess health and development in children (Creo and Schwenk, 2017). For physicians treating the elderly, improved methods for estimating bone age of older adults would be helpful when assessing the risk of osteoporotic fractures: this is important because osteoporosis is under-diagnosed, under-treated and under-appreciated as a factor that influences both life expectancy and quality of life. Now, in eLife, Thao Phuong Ho-Le, Tuan Nguyen and colleagues at the Garvan Institute of Medical Research in Sydney and other institutions in Australia and Viet Nam report that they have developed a model that can estimate bone age in older adults and provide improved estimates of the risks of subsequent osteoporotic fractures and death following an initial fracture (Ho-Le et al., 2021).

The data come from a well-established population-based study, the Dubbo Osteoporosis Epidemiology Study, which has been following around 3500 men and women in Dubbo, a city in south-west Australia, who were 60 or over in 1989. Ho-Le et al. developed a multi-state model to provide prediction estimates for fracture, refracture and death. In this model individuals can be in one of five states – no fracture, first fracture, second fracture, third fracture and death – and can transition through all five states, or move directly from any of the first four states to death. Ho-Le et al. report that, during the 20 year follow-up, the risk of a second fracture was higher in women (36%) than in men (22%), but the mortality risk was higher in men (41%) than women (25%). The risk of transitioning from any state to death was also much higher in men than women.

As mentioned above, chronological age and bone age are usually the same. But given a low bone mineral density coupled with other risk factors for fracture, the age of your bones can be greater than your chronological age. Physicians use a tool called the Fracture Risk Assessment tool (FRAX) to decide if a patient should receive treatment to protect against osteoporotic fractures: in general, if the probability of hip fracture over the next ten years is 3% or higher, or if the risk of a major osteoporotic fracture (that is, a fracture to the spine, forearm, hip or shoulder) is 20% or higher, treatment is recommended. While the 3% risk threshold for hip fracture prevention was deemed cost-effective when FRAX was developed (Tosteson et al., 2008), a patient might think: "But I have a 97% chance of not fracturing". However, if the physician could reply, "You may be 70, but you have the bones of an 80 year old", the patient may be more willing to consider treatment.

The results of this study are important for other reasons. Existing risk assessment tools do not take into account the increased chances of further fractures, let alone death (Rubin et al., 2013), but the model developed by Ho-Le et al. can estimate the 5 year individual probability of transitioning from no fracture to fracture or to death. For example, for a 70-year-old woman with low bone mineral density but no other risk factors, the probability of transitioning from no fracture to first fracture (10%) was similar to the risk of death (8.6%). However, once she experiences a first fracture, the risk of another fracture goes up dramatically (16.5%) and exceeds the risk of dying (10.4%). With this information, the patient may be more likely to consider treatment.

There are several unanswered questions and inherent limitations. Older folks fear institutionalization, so the possibility of transitioning to disability outcomes and assisted living could be added to the model. The Dubbo study is also a single cohort from one city, so the model needs to be validated in cohorts around the world. Moreover, since Dubbo residents are 98% white, the model needs to be tested in other race/ethnicities. Lastly, the model is only adjusted for comorbidities at baseline. It is highly likely that the participants developed other chronic diseases over the 20 year follow-up, but such diseases are not included in the model, so the risk of refracture and death may have been underestimated.

Screening for high-risk patients who may benefit from therapy is important because prevention of future fractures and their consequences is possible with the armamentarium of treatments that are available. Future pragmatic randomized clinical trials are needed to test whether screening in the community, using this type of multistate model, can increase treatment rates and ultimately reduce fractures and their consequences.

References

Article and author information

Author details

  1. Jane A Cauley

    Jane A Cauley is in the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, United States

    For correspondence
    jcauley@edc.pitt.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0752-4408
  2. Dolores M Shoback

    Dolores M Shoback is in the Endocrine Research Unit, San Francisco Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, United States

    Competing interests
    No competing interests declared

Publication history

  1. Version of Record published: March 2, 2021 (version 1)

Copyright

© 2021, Cauley and Shoback

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 346
    Page views
  • 18
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jane A Cauley
  2. Dolores M Shoback
(2021)
Osteoporotic Fracture: Bone age is not just for kids
eLife 10:e66916.
https://doi.org/10.7554/eLife.66916
  1. Further reading

Further reading

    1. Epidemiology and Global Health
    Tina Bech Olesen, Henry Jensen ... Morten Rasmussen
    Research Article

    Background: Worldwide, most colorectal cancer screening programmes were paused at the start of the COVID-19 pandemic, whilst the Danish faecal immunochemical test (FIT)-based programme continued without pausing. We examined colorectal cancer screening participation and compliance with subsequent colonoscopy in Denmark throughout the pandemic.

    Methods: We used data from the Danish Colorectal Cancer Screening Database among individuals aged 50-74 years old invited to participate in colorectal cancer screening from 2018-2021 combined with population-wide registries. Using a generalised linear model, we estimated prevalence ratios (PR) and 95% confidence intervals (CI) of colorectal cancer screening participation within 90 days since invitation and compliance with colonoscopy within 60 days since a positive FIT test during the pandemic in comparison with the previous years adjusting for age, month and year of invitation.

    Results: Altogether, 3,133,947 invitations were sent out to 1,928,725 individuals and there were 94,373 positive FIT tests (in 92,848 individuals) during the study period. Before the pandemic, 60.7% participated in screening within 90 days. A minor reduction in participation was observed at the start of the pandemic (PR=0.95; 95% CI: 0.94-0.96 in pre-lockdown and PR=0.85; 95% CI: 0.85-0.86 in 1st lockdown) corresponding to a participation rate of 54.9% during pre-lockdown and 53.0% during 1st lockdown. This was followed by a 5-10% increased participation in screening corresponding to a participation rate of up to 64.9%. The largest increase in participation was observed among 55-59 year olds and among immigrants. The compliance with colonoscopy within 60 days was 89.9% before the pandemic. A slight reduction was observed during 1st lockdown (PR=0.96; 95% CI: 0.93-0.98), where after it resumed to normal levels.

    Conclusions: Participation in the Danish FIT-based colorectal cancer screening programme and subsequent compliance to colonoscopy after a positive FIT result was only slightly affected by the COVID-19 pandemic.

    Funding: The study was funded by the Danish Cancer Society Scientific Committee (grant number R321-A17417) and the Danish regions.

    1. Epidemiology and Global Health
    2. Medicine
    Nathan J Cheetham, Milla Kibble ... Claire J Steves
    Research Article

    Background: SARS-CoV-2 antibody levels can be used to assess humoral immune responses following SARS-CoV-2 infection or vaccination, and may predict risk of future infection. Higher levels of SARS-CoV-2 anti-Spike antibodies are known to be associated with increased protection against future SARS-CoV-2 infection. However, variation in antibody levels and risk factors for lower antibody levels following each round of SARS-CoV-2 vaccination have not been explored across a wide range of socio-demographic, SARS-CoV-2 infection and vaccination, and health factors within population-based cohorts.

    Methods: Samples were collected from 9,361 individuals from TwinsUK and ALSPAC UK population-based longitudinal studies and tested for SARS-CoV-2 antibodies. Cross-sectional sampling was undertaken jointly in April-May 2021 (TwinsUK, N = 4,256; ALSPAC, N = 4,622), and in TwinsUK only in November 2021-January 2022 (N = 3,575). Variation in antibody levels after first, second, and third SARS-CoV-2 vaccination with health, socio-demographic, SARS-CoV-2 infection and SARS-CoV-2 vaccination variables were analysed. Using multivariable logistic regression models, we tested associations between antibody levels following vaccination and: (1) SARS-CoV-2 infection following vaccination(s); (2) health, socio-demographic, SARS-CoV-2 infection and SARS-CoV-2 vaccination variables.

    Results: Within TwinsUK, single-vaccinated individuals with the lowest 20% of anti-Spike antibody levels at initial testing had 3-fold greater odds of SARS-CoV-2 infection over the next six to nine months (OR = 2.9, 95% CI: 1.4, 6.0), compared to the top 20%. In TwinsUK and ALSPAC, individuals identified as at increased risk of COVID-19 complication through the UK 'Shielded Patient List' had consistently greater odds (2- to 4-fold) of having antibody levels in the lowest 10%. Third vaccination increased absolute antibody levels for almost all individuals, and reduced relative disparities compared with earlier vaccinations.

    Conclusions: These findings quantify the association between antibody level and risk of subsequent infection, and support a policy of triple vaccination for the generation of protective antibodies.

    Funding: Antibody testing was funded by UK Health Security Agency. The National Core Studies program is funded by COVID-19 Longitudinal Health and Wellbeing - National Core Study (LHW-NCS) HMT/UKRI/MRC (MC_PC_20030 & MC_PC_20059). Related funding was also provided by the NIHR 606 (CONVALESCENCE grant COV-LT-0009). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC.