Osteoporotic Fracture: Bone age is not just for kids
Chronological age and "bone age" are the same in most people, but sometimes they are different. For decades pediatricians have used bone age – which can be estimated from X-rays – as a tool to assess health and development in children (Creo and Schwenk, 2017). For physicians treating the elderly, improved methods for estimating bone age of older adults would be helpful when assessing the risk of osteoporotic fractures: this is important because osteoporosis is under-diagnosed, under-treated and under-appreciated as a factor that influences both life expectancy and quality of life. Now, in eLife, Thao Phuong Ho-Le, Tuan Nguyen and colleagues at the Garvan Institute of Medical Research in Sydney and other institutions in Australia and Viet Nam report that they have developed a model that can estimate bone age in older adults and provide improved estimates of the risks of subsequent osteoporotic fractures and death following an initial fracture (Ho-Le et al., 2021).
The data come from a well-established population-based study, the Dubbo Osteoporosis Epidemiology Study, which has been following around 3500 men and women in Dubbo, a city in south-west Australia, who were 60 or over in 1989. Ho-Le et al. developed a multi-state model to provide prediction estimates for fracture, refracture and death. In this model individuals can be in one of five states – no fracture, first fracture, second fracture, third fracture and death – and can transition through all five states, or move directly from any of the first four states to death. Ho-Le et al. report that, during the 20 year follow-up, the risk of a second fracture was higher in women (36%) than in men (22%), but the mortality risk was higher in men (41%) than women (25%). The risk of transitioning from any state to death was also much higher in men than women.
As mentioned above, chronological age and bone age are usually the same. But given a low bone mineral density coupled with other risk factors for fracture, the age of your bones can be greater than your chronological age. Physicians use a tool called the Fracture Risk Assessment tool (FRAX) to decide if a patient should receive treatment to protect against osteoporotic fractures: in general, if the probability of hip fracture over the next ten years is 3% or higher, or if the risk of a major osteoporotic fracture (that is, a fracture to the spine, forearm, hip or shoulder) is 20% or higher, treatment is recommended. While the 3% risk threshold for hip fracture prevention was deemed cost-effective when FRAX was developed (Tosteson et al., 2008), a patient might think: "But I have a 97% chance of not fracturing". However, if the physician could reply, "You may be 70, but you have the bones of an 80 year old", the patient may be more willing to consider treatment.
The results of this study are important for other reasons. Existing risk assessment tools do not take into account the increased chances of further fractures, let alone death (Rubin et al., 2013), but the model developed by Ho-Le et al. can estimate the 5 year individual probability of transitioning from no fracture to fracture or to death. For example, for a 70-year-old woman with low bone mineral density but no other risk factors, the probability of transitioning from no fracture to first fracture (10%) was similar to the risk of death (8.6%). However, once she experiences a first fracture, the risk of another fracture goes up dramatically (16.5%) and exceeds the risk of dying (10.4%). With this information, the patient may be more likely to consider treatment.
There are several unanswered questions and inherent limitations. Older folks fear institutionalization, so the possibility of transitioning to disability outcomes and assisted living could be added to the model. The Dubbo study is also a single cohort from one city, so the model needs to be validated in cohorts around the world. Moreover, since Dubbo residents are 98% white, the model needs to be tested in other race/ethnicities. Lastly, the model is only adjusted for comorbidities at baseline. It is highly likely that the participants developed other chronic diseases over the 20 year follow-up, but such diseases are not included in the model, so the risk of refracture and death may have been underestimated.
Screening for high-risk patients who may benefit from therapy is important because prevention of future fractures and their consequences is possible with the armamentarium of treatments that are available. Future pragmatic randomized clinical trials are needed to test whether screening in the community, using this type of multistate model, can increase treatment rates and ultimately reduce fractures and their consequences.
References
-
Bone age: A handy tool for pediatric providersPediatrics 140:e20171486.https://doi.org/10.1542/peds.2017-1486
-
Risk assessment tools to identify women with increased risk of osteoporotic fracture: Complexity or simplicity? A systematic reviewJournal of Bone and Mineral Research 28:1701–1717.https://doi.org/10.1002/jbmr.1956
-
Cost-effective osteoporosis treatment thresholds: the United States perspectiveOsteoporosis International 19:437–447.https://doi.org/10.1007/s00198-007-0550-6
Article and author information
Author details
Publication history
- Version of Record published: March 2, 2021 (version 1)
Copyright
© 2021, Cauley and Shoback
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 387
- Page views
-
- 19
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
Background:
Irregular sleep-wake timing may cause circadian disruption leading to several chronic age-related diseases. We examined the relationship between sleep regularity and risk of all-cause, cardiovascular disease (CVD), and cancer mortality in 88,975 participants from the prospective UK Biobank cohort.
Methods:
The sleep regularity index (SRI) was calculated as the probability of an individual being in the same state (asleep or awake) at any two time points 24 hr apart, averaged over 7 days of accelerometry (range 0–100, with 100 being perfectly regular). The SRI was related to the risk of mortality in time-to-event models.
Results:
The mean sample age was 62 years (standard deviation [SD], 8), 56% were women, and the median SRI was 60 (SD, 10). There were 3010 deaths during a mean follow-up of 7.1 years. Following adjustments for demographic and clinical variables, we identified a non-linear relationship between the SRI and all-cause mortality hazard (p [global test of spline term]<0.001). Hazard ratios, relative to the median SRI, were 1.53 (95% confidence interval [CI]: 1.41, 1.66) for participants with SRI at the 5th percentile (SRI = 41) and 0.90 (95% CI: 0.81, 1.00) for those with SRI at the 95th percentile (SRI = 75), respectively. Findings for CVD mortality and cancer mortality followed a similar pattern.
Conclusions:
Irregular sleep-wake patterns are associated with higher mortality risk.
Funding:
National Health and Medical Research Council of Australia (GTN2009264; GTN1158384), National Institute on Aging (AG062531), Alzheimer’s Association (2018-AARG-591358), and the Banting Fellowship Program (#454104).
-
- Epidemiology and Global Health
Background:
The Coronavirus Disease of 2019 (COVID-19) has impacted the health and day-to-day life of individuals, especially the elderly and people with certain pre-existing medical conditions, including cancer. The purpose of this study was to investigate how COVID-19 impacted access to cancer screenings and treatment, by studying the participants in the Multiethnic Cohort (MEC) study.
Methods:
The MEC has been following over 215,000 residents of Hawai‘i and Los Angeles for the development of cancer and other chronic diseases since 1993–1996. It includes men and women of five racial and ethnic groups: African American, Japanese American, Latino, Native Hawaiian, and White. In 2020, surviving participants were sent an invitation to complete an online survey on the impact of COVID-19 on their daily life activities, including adherence to cancer screening and treatment. Approximately 7,000 MEC participants responded. A cross-sectional analysis was performed to investigate the relationships between the postponement of regular health care visits and cancer screening procedures or treatment with race and ethnicity, age, education, and comorbidity.
Results:
Women with more education, women with lung disease, COPD, or asthma, and women and men diagnosed with cancer in the past 5 years were more likely to postpone any cancer screening test/procedure due to the COVID-19 pandemic. Groups less likely to postpone cancer screening included older women compared to younger women and Japanese American men and women compared to White men and women.
Conclusions:
This study revealed specific associations of race/ethnicity, age, education level, and comorbidities with the cancer-related screening and healthcare of MEC participants during the COVID-19 pandemic. Increased monitoring of patients in high-risk groups for cancer and other diseases is of the utmost importance as the chance of undiagnosed cases or poor prognosis is increased as a result of delayed screening and treatment.
Funding:
This research was partially supported by the Omidyar 'Ohana Foundation and grant U01 CA164973 from the National Cancer Institute.