Latent gammaherpesvirus exacerbates arthritis through modification of age-associated B cells

Abstract

Epstein-Barr virus (EBV) infection is associated with rheumatoid arthritis (RA) in adults, though the nature of the relationship remains unknown. Herein, we examine the contribution of viral infection to the severity of arthritis in mice. We provide the first evidence that latent gammaherpesvirus infection enhances clinical arthritis, modeling EBV's role in RA. Mice latently infected with a murine analog of EBV, gammaherpesvirus 68 (gHV68), develop more severe collagen-induced arthritis and a Th1-skewed immune profile reminiscent of human disease. We demonstrate that disease enhancement requires viral latency and is not due to active virus stimulation of the immune response. Age-associated B cells (ABCs) are associated with several human autoimmune diseases, including arthritis, though their contribution to disease is not well understood. Using ABC knockout mice, we provide the first evidence that ABCs are mechanistically required for viral enhancement of disease, thereby establishing that ABCs are impacted by latent gammaherpesvirus infection and provoke arthritis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Isobel C Mouat

    Microbiology and Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Zachary J Morse

    Microbiology and Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Iryna Shanina

    Microbiology and Immunology, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Kelly L Brown

    2Department of Pediatrics, Division of Rheumatology, and British Columbia Children's Hospital 8 Research Institute, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Marc S Horwitz

    Microbiology and Immunology, University of British Columbia, Vancouver, Canada
    For correspondence
    mhorwitz@mail.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5922-2199

Funding

Multiple Sclerosis Society of Canada (# 3070)

  • Marc S Horwitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All work was approved by the Animal Care Committee (ACC) of the University of British504 Columbia (Protocols A17- 0105, A17-0184).

Copyright

© 2021, Mouat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,408
    views
  • 201
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Isobel C Mouat
  2. Zachary J Morse
  3. Iryna Shanina
  4. Kelly L Brown
  5. Marc S Horwitz
(2021)
Latent gammaherpesvirus exacerbates arthritis through modification of age-associated B cells
eLife 10:e67024.
https://doi.org/10.7554/eLife.67024

Share this article

https://doi.org/10.7554/eLife.67024

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Daniel Spari, Annina Schmid ... Guido Beldi
    Research Article

    Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is released by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane notably contributes to ATP release and is associated with bacterial death. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analyzed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.

    1. Immunology and Inflammation
    Chan-Su Park, Jian Guan ... Scheherazade Sadegh-Nasseri
    Research Article

    The fate of developing T cells is determined by the strength of T cell receptor (TCR) signal they receive in the thymus. This process is finely regulated through the tuning of positive and negative regulators in thymocytes. The Family with sequence similarity 49 member B (Fam49b) protein is a newly discovered negative regulator of TCR signaling that has been shown to suppress Rac-1 activity in vitro in cultured T cell lines. However, the contribution of Fam49b to the thymic development of T cells is unknown. To investigate this important issue, we generated a novel mouse line deficient in Fam49b (Fam49b-KO). We observed that Fam49b-KO double positive (DP) thymocytes underwent excessive negative selection, whereas the positive selection stage was unaffected. Fam49b deficiency impaired the survival of single positive thymocytes and peripheral T cells. This altered development process resulted in significant reductions in CD4 and CD8 single-positive thymocytes as well as peripheral T cells. Interestingly, a large proportion of the TCRγδ+ and CD8αα+TCRαβ+ gut intraepithelial T lymphocytes were absent in Fam49b-KO mice. Our results demonstrate that Fam49b dampens thymocytes TCR signaling in order to escape negative selection during development, uncovering the function of Fam49b as a critical regulator of the selection process to ensure normal thymocyte development and peripheral T cells survival.