Sumoylation of the human histone H4 tail inhibits p300-mediated transcription by RNA polymerase II in cellular extracts

Abstract

The post-translational modification of histones by the small ubiquitin-like modifier (SUMO) protein has been associated with gene regulation, centromeric localization and double-strand break repair in eukaryotes. Although sumoylation of histone H4 was specifically associated with gene repression, this could not be proven due to the challenge of site-specifically sumoylating H4 in cells. Biochemical crosstalk between SUMO and other histone modifications, such as H4 acetylation and H3 methylation, that are associated with active genes also remains unclear. We addressed these challenges in mechanistic studies using an H4 chemically modified at Lys12 by SUMO-3 (H4K12su) and incorporated into mononucleosomes and chromatinized plasmids for functional studies. Mononucleosome-based assays revealed that H4K12su inhibits transcription-activating H4 tail acetylation by the histone acetyltransferase p300, as well as transcription-associated H3K4 methylation by the extended catalytic module of the Set1/COMPASS histone methyltransferase complex. Activator- and p300-dependent in vitro transcription assays with chromatinized plasmids revealed that H4K12su inhibits both H4 tail acetylation and RNA polymerase II-mediated transcription. Finally, cell-based assays with a SUMO-H4 fusion that mimics H4 tail sumoylation confirmed the negative crosstalk between histone sumoylation and acetylation/methylation. Thus, our studies establish the key role for histone sumoylation in gene silencing and its negative biochemical crosstalk with active transcription-associated marks in human cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Calvin Jon A Leonen

    Chemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3003-9021
  2. Miho Shimada

    Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Caroline E Weller

    Chemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tomoyoshi Nakadai

    Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter L Hsu

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elizabeth L Tyson

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Arpit Mishra

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Patrick M M Shelton

    Chemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Martin Sadilek

    Chemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. R David Hawkins

    Medicine and Genome Sciences, University Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2997-9457
  11. Ning Zheng

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Robert G Roeder

    The Rockefeller University, New York, United States
    For correspondence
    roeder@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
  13. Champak Chatterjee

    Chemistry, University of Washington, Seattle, United States
    For correspondence
    champak1@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5772-4438

Funding

NIH NCI (R01CA234561)

  • Robert G Roeder

NIH NIDDK (R01DK071900)

  • Robert G Roeder

NIH NIGMS (R01GM110430)

  • Champak Chatterjee

NIH NIGMS (T32GM008268)

  • Calvin Jon A Leonen

NSF GRFP (DGH-1256082)

  • Caroline E Weller

NIH NICHD (R01HD097408)

  • Ning Zheng

NIH NIDDK (R01DK103667)

  • R David Hawkins

NIH NIAMS (R01AR065952)

  • R David Hawkins

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hening Lin, Cornell University, United States

Version history

  1. Received: February 27, 2021
  2. Preprint posted: April 8, 2021 (view preprint)
  3. Accepted: November 6, 2021
  4. Accepted Manuscript published: November 8, 2021 (version 1)
  5. Version of Record published: November 26, 2021 (version 2)

Copyright

© 2021, Leonen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,755
    Page views
  • 249
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Calvin Jon A Leonen
  2. Miho Shimada
  3. Caroline E Weller
  4. Tomoyoshi Nakadai
  5. Peter L Hsu
  6. Elizabeth L Tyson
  7. Arpit Mishra
  8. Patrick M M Shelton
  9. Martin Sadilek
  10. R David Hawkins
  11. Ning Zheng
  12. Robert G Roeder
  13. Champak Chatterjee
(2021)
Sumoylation of the human histone H4 tail inhibits p300-mediated transcription by RNA polymerase II in cellular extracts
eLife 10:e67952.
https://doi.org/10.7554/eLife.67952

Share this article

https://doi.org/10.7554/eLife.67952

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.