Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator

  1. Adrian L Sanborn  Is a corresponding author
  2. Benjamin T Yeh
  3. Jordan T Feigerle
  4. Cynthia V Hao
  5. Raphael J L Townshend
  6. Erez Lieberman-Aiden
  7. Ron O Dror
  8. Roger D Kornberg  Is a corresponding author
  1. Stanford University, United States
  2. Baylor College of Medicine, United States
  3. Stanford University School of Medicine, United States

Abstract

Gene activator proteins comprise distinct DNA-binding and transcriptional activation domains (ADs). Because few ADs have been described, we tested domains tiling all yeast transcription factors for activation in vivo and identified 150 ADs. By mRNA display, we showed that 73% of ADs bound the Med15 subunit of Mediator, and that binding strength was correlated with activation. AD-Mediator interaction in vitro was unaffected by a large excess of free activator protein, pointing to a dynamic mechanism of interaction. Structural modeling showed that ADs interact with Med15 without shape complementarity ('fuzzy' binding). ADs shared no sequence motifs, but mutagenesis revealed biochemical and structural constraints. Finally, a neural network trained on AD sequences accurately predicted ADs in human proteins and in other yeast proteins, including chromosomal proteins and chromatin remodeling complexes. These findings solve the longstanding enigma of AD structure and function and provide a rationale for their role in biology.

Data availability

All data from in vivo activation and in vitro screens are included in tables as source data files. PDB files of structural models of Med15-AD interactions are included in Figure 6-source data 2. All sequencing data have been deposited in GEO, under the accession code GSE173156.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Adrian L Sanborn

    Department of Structural Biology, Department of Computer Science, Stanford University, Stanford, United States
    For correspondence
    a@adriansanborn.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin T Yeh

    David Geffen School of Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9397-6392
  3. Jordan T Feigerle

    Department of Molecular Physiology and Biophysics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cynthia V Hao

    Department of Structural Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2183-0698
  5. Raphael J L Townshend

    Department of Computer Science, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Erez Lieberman-Aiden

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ron O Dror

    Department of Computer Science, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Roger D Kornberg

    Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    kornberg@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2425-7519

Funding

National Institutes of Health (R01-DK121366 and R01-AI021144)

  • Roger D Kornberg

U.S. Department of Energy (Office of Science Graduate Student Research (SCGSR) program (DE-SC0014664))

  • Raphael J L Townshend

National Institutes of Health (F32-GM126704)

  • Jordan T Feigerle

National Institutes of Health (R01-GM127359)

  • Ron O Dror

U.S. Department of Energy (Scientific Discovery through Advanced Computing (SciDAC) program)

  • Ron O Dror

National Science Foundation (Physics Frontiers Center Award (PHY1427654))

  • Erez Lieberman-Aiden

Welch Foundation (Q-1866)

  • Erez Lieberman-Aiden

U.S. Department of Agriculture (Agriculture and Food Research Initiative Grant (2017-05741))

  • Erez Lieberman-Aiden

National Institutes of Health (4D Nucleome Grant (U01HL130010))

  • Erez Lieberman-Aiden

National Institutes of Health (Encyclopedia of DNA Elements Mapping Center Award (UM1HG009375))

  • Erez Lieberman-Aiden

U.S. Department of Defense (National Defense Science & Engineering Graduate (NDSEG) Fellowship)

  • Adrian L Sanborn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Sanborn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,778
    views
  • 947
    downloads
  • 111
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adrian L Sanborn
  2. Benjamin T Yeh
  3. Jordan T Feigerle
  4. Cynthia V Hao
  5. Raphael J L Townshend
  6. Erez Lieberman-Aiden
  7. Ron O Dror
  8. Roger D Kornberg
(2021)
Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator
eLife 10:e68068.
https://doi.org/10.7554/eLife.68068

Share this article

https://doi.org/10.7554/eLife.68068

Further reading

    1. Chromosomes and Gene Expression
    Chileleko Siachisumo, Sara Luzzi ... David J Elliott
    Research Advance

    Previously, we showed that the germ cell-specific nuclear protein RBMXL2 represses cryptic splicing patterns during meiosis and is required for male fertility (Ehrmann et al., 2019). Here, we show that in somatic cells the similar yet ubiquitously expressed RBMX protein has similar functions. RBMX regulates a distinct class of exons that exceed the median human exon size. RBMX protein-RNA interactions are enriched within ultra-long exons, particularly within genes involved in genome stability, and repress the selection of cryptic splice sites that would compromise gene function. The RBMX gene is silenced during male meiosis due to sex chromosome inactivation. To test whether RBMXL2 might replace the function of RBMX during meiosis we induced expression of RBMXL2 and the more distantly related RBMY protein in somatic cells, finding each could rescue aberrant patterns of RNA processing caused by RBMX depletion. The C-terminal disordered domain of RBMXL2 is sufficient to rescue proper splicing control after RBMX depletion. Our data indicate that RBMX and RBMXL2 have parallel roles in somatic tissues and the germline that must have been conserved for at least 200 million years of mammalian evolution. We propose RBMX family proteins are particularly important for the splicing inclusion of some ultra-long exons with increased intrinsic susceptibility to cryptic splice site selection.

    1. Chromosomes and Gene Expression
    Moran Kelbert, Antonio Jordán-Pla ... Mordechai Choder
    Research Article

    To function effectively as an integrated system, the transcriptional and post-transcriptional machineries must communicate through mechanisms that are still poorly understood. Here, we focus on the zinc-finger Sfp1, known to regulate transcription of proliferation-related genes. We show that Sfp1 can regulate transcription either by binding to promoters, like most known transcription activators, or by binding to the transcribed regions (gene bodies), probably via RNA polymerase II (Pol II). We further studied the first mode of Sfp1 activity and found that, following promoter binding, Sfp1 binds to gene bodies and affects Pol II configuration, manifested by dissociation or conformational change of its Rpb4 subunit and increased backtracking. Surprisingly, Sfp1 binds to a subset of mRNAs co-transcriptionally and stabilizes them. The interaction between Sfp1 and its client mRNAs is controlled by their respective promoters and coincides with Sfp1’s dissociation from chromatin. Intriguingly, Sfp1 dissociation from the chromatin correlates with the extent of the backtracked Pol II. We propose that, following promoter recruitment, Sfp1 accompanies Pol II and regulates backtracking. The backtracked Pol II is more compatible with Sfp1’s relocation to the nascent transcripts, whereupon Sfp1 accompanies these mRNAs to the cytoplasm and regulates their stability. Thus, Sfp1’s co-transcriptional binding imprints the mRNA fate, serving as a paradigm for the cross-talk between the synthesis and decay of specific mRNAs, and a paradigm for the dual-role of some zinc-finger proteins. The interplay between Sfp1’s two modes of transcription regulation remains to be examined.