Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator

  1. Adrian L Sanborn  Is a corresponding author
  2. Benjamin T Yeh
  3. Jordan T Feigerle
  4. Cynthia V Hao
  5. Raphael J L Townshend
  6. Erez Lieberman-Aiden
  7. Ron O Dror
  8. Roger D Kornberg  Is a corresponding author
  1. Stanford University, United States
  2. Baylor College of Medicine, United States
  3. Stanford University School of Medicine, United States

Abstract

Gene activator proteins comprise distinct DNA-binding and transcriptional activation domains (ADs). Because few ADs have been described, we tested domains tiling all yeast transcription factors for activation in vivo and identified 150 ADs. By mRNA display, we showed that 73% of ADs bound the Med15 subunit of Mediator, and that binding strength was correlated with activation. AD-Mediator interaction in vitro was unaffected by a large excess of free activator protein, pointing to a dynamic mechanism of interaction. Structural modeling showed that ADs interact with Med15 without shape complementarity ('fuzzy' binding). ADs shared no sequence motifs, but mutagenesis revealed biochemical and structural constraints. Finally, a neural network trained on AD sequences accurately predicted ADs in human proteins and in other yeast proteins, including chromosomal proteins and chromatin remodeling complexes. These findings solve the longstanding enigma of AD structure and function and provide a rationale for their role in biology.

Data availability

All data from in vivo activation and in vitro screens are included in tables as source data files. PDB files of structural models of Med15-AD interactions are included in Figure 6-source data 2. All sequencing data have been deposited in GEO, under the accession code GSE173156.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Adrian L Sanborn

    Department of Structural Biology, Department of Computer Science, Stanford University, Stanford, United States
    For correspondence
    a@adriansanborn.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin T Yeh

    David Geffen School of Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9397-6392
  3. Jordan T Feigerle

    Department of Molecular Physiology and Biophysics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cynthia V Hao

    Department of Structural Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2183-0698
  5. Raphael J L Townshend

    Department of Computer Science, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Erez Lieberman-Aiden

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ron O Dror

    Department of Computer Science, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Roger D Kornberg

    Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    kornberg@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2425-7519

Funding

National Institutes of Health (R01-DK121366 and R01-AI021144)

  • Roger D Kornberg

U.S. Department of Energy (Office of Science Graduate Student Research (SCGSR) program (DE-SC0014664))

  • Raphael J L Townshend

National Institutes of Health (F32-GM126704)

  • Jordan T Feigerle

National Institutes of Health (R01-GM127359)

  • Ron O Dror

U.S. Department of Energy (Scientific Discovery through Advanced Computing (SciDAC) program)

  • Ron O Dror

National Science Foundation (Physics Frontiers Center Award (PHY1427654))

  • Erez Lieberman-Aiden

Welch Foundation (Q-1866)

  • Erez Lieberman-Aiden

U.S. Department of Agriculture (Agriculture and Food Research Initiative Grant (2017-05741))

  • Erez Lieberman-Aiden

National Institutes of Health (4D Nucleome Grant (U01HL130010))

  • Erez Lieberman-Aiden

National Institutes of Health (Encyclopedia of DNA Elements Mapping Center Award (UM1HG009375))

  • Erez Lieberman-Aiden

U.S. Department of Defense (National Defense Science & Engineering Graduate (NDSEG) Fellowship)

  • Adrian L Sanborn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alan G Hinnebusch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States

Version history

  1. Received: March 3, 2021
  2. Accepted: April 25, 2021
  3. Accepted Manuscript published: April 27, 2021 (version 1)
  4. Accepted Manuscript updated: April 30, 2021 (version 2)
  5. Version of Record published: May 20, 2021 (version 3)

Copyright

© 2021, Sanborn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,882
    Page views
  • 853
    Downloads
  • 57
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adrian L Sanborn
  2. Benjamin T Yeh
  3. Jordan T Feigerle
  4. Cynthia V Hao
  5. Raphael J L Townshend
  6. Erez Lieberman-Aiden
  7. Ron O Dror
  8. Roger D Kornberg
(2021)
Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator
eLife 10:e68068.
https://doi.org/10.7554/eLife.68068

Share this article

https://doi.org/10.7554/eLife.68068

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Erandi Velazquez-Miranda, Ming He
    Insight

    Endothelial cell subpopulations are characterized by unique gene expression profiles, epigenetic landscapes and functional properties.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.