SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-kB pathway

  1. Shahanshah Khan
  2. Mahnoush Shafiei
  3. Christopher Longoria
  4. John W Schoggins
  5. Rashmin Savani
  6. Hasan Zaki  Is a corresponding author
  1. The University of Texas Southwestern Medical Center, United States

Abstract

The pathogenesis of COVID-19 is associated with a hyperinflammatory response; however, the precise mechanism of SARS-CoV-2-induced inflammation is poorly understood. Here we investigated direct inflammatory functions of major structural proteins of SARS-CoV-2. We observed that spike (S) protein potently induced inflammatory cytokines and chemokines including IL-6, IL-1b, TNFa, CXCL1, CXCL2, and CCL2, but not IFNs in human and mouse macrophages. No such inflammatory response was observed in response to membrane (M), envelope (E), and nucleocapsid (N) proteins. When stimulated with extracellular S protein, human and mouse lung epithelial cells also produced inflammatory cytokines and chemokines. Interestingly, epithelial cells expressing S protein intracellularly were non-inflammatory, but elicited an inflammatory response in macrophages when co-cultured. Biochemical studies revealed that S protein triggers inflammation via activation of the NF-kB pathway in a MyD88-dependent manner. Further, such an activation of the NF-kB pathway was abrogated in Tlr2-deficient macrophages. Consistently, administration of S protein induced IL-6, TNF-a, and IL-1b in wild-type, but not Tlr2-deficient mice. Notably, upon recognition of S protein, TLR2 dimerizes with TLR1 or TLR6 to activate the NF-kB pathway. Together these data reveal a mechanism for the cytokine storm during SARS-CoV-2 infection and suggest that TLR2 could be a potential therapeutic target for COVID-19.

Data availability

There is no clinical data and large data set in this paper. The raw data for all graphs presented in this paper are submitted in the source data section.

Article and author information

Author details

  1. Shahanshah Khan

    Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3052-932X
  2. Mahnoush Shafiei

    Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Christopher Longoria

    Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. John W Schoggins

    Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    John W Schoggins, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7944-6800
  5. Rashmin Savani

    Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Hasan Zaki

    Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    hasan.zaki@utsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9002-5399

Funding

Cancer Prevention and Research Institute of Texas (RP200184)

  • Hasan Zaki

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK125352)

  • Hasan Zaki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies were approved by the Institutional Animal Care and Use Committee (IACUC) and were conducted in accordance with the IACUC guidelines and the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The IACUC permit number is 2016-101683

Copyright

© 2021, Khan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,683
    views
  • 1,388
    downloads
  • 261
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shahanshah Khan
  2. Mahnoush Shafiei
  3. Christopher Longoria
  4. John W Schoggins
  5. Rashmin Savani
  6. Hasan Zaki
(2021)
SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-kB pathway
eLife 10:e68563.
https://doi.org/10.7554/eLife.68563

Share this article

https://doi.org/10.7554/eLife.68563

Further reading

    1. Epidemiology and Global Health
    2. Medicine
    3. Microbiology and Infectious Disease
    Edited by Diane M Harper et al.
    Collection

    eLife has published the following articles on SARS-CoV-2 and COVID-19.

    1. Immunology and Inflammation
    Somen K Mistri, Brianna M Hilton ... Jonathan E Boyson
    Research Article

    During thymic development, most γδ T cells acquire innate-like characteristics that are critical for their function in tumor surveillance, infectious disease, and tissue repair. The mechanisms, however, that regulate γδ T cell developmental programming remain unclear. Recently, we demonstrated that the SLAM/SAP signaling pathway regulates the development and function of multiple innate-like γδ T cell subsets. Here, we used a single-cell proteogenomics approach to identify SAP-dependent developmental checkpoints and to define the SAP-dependent γδ TCR repertoire in mice. SAP deficiency resulted in both a significant loss of an immature Gzma+Blk+Etv5+Tox2+ γδT17 precursor population and a significant increase in Cd4+Cd8+Rorc+Ptcra+Rag1+ thymic γδ T cells. SAP-dependent diversion of embryonic day 17 thymic γδ T cell clonotypes into the αβ T cell developmental pathway was associated with a decreased frequency of mature clonotypes in neonatal thymus, and an altered γδ TCR repertoire in the periphery. Finally, we identify TRGV4/TRAV13-4(DV7)-expressing T cells as a novel, SAP-dependent Vγ4 γδT1 subset. Together, the data support a model in which SAP-dependent γδ/αβ T cell lineage commitment regulates γδ T cell developmental programming and shapes the γδ TCR repertoire.