Dynamically linking influenza virus infection kinetics, lung injury, inflammation, and disease severity

  1. Margaret A Myers
  2. Amanda P Smith
  3. Lindey C Lane
  4. David J Moquin
  5. Rosemary Aogo
  6. Stacie Woolard
  7. Paul Thomas
  8. Peter Vogel
  9. Amber M Smith  Is a corresponding author
  1. University of Tennessee Health Science Center, United States
  2. University of Tennessee Health Science C, United States
  3. Washington University School of Medicine, United States
  4. St Jude Children's Research Hospital, United States

Abstract

Influenza viruses cause a significant amount of morbidity and mortality. Understanding host immune control efficacy and how different factors influence lung injury and disease severity are critical. We established and validated dynamical connections between viral loads, infected cells, CD8+ T cells, lung injury, inflammation, and disease severity using an integrative mathematical model-experiment exchange. Our results showed that the dynamics of inflammation and virus-inflicted lung injury are distinct and nonlinearly related to disease severity, and that these two pathologic measurements can be independently predicted using the model-derived infected cell dynamics. Our findings further indicated that the relative CD8+ T cell dynamics paralleled the percent of the lung that had resolved with the rate of CD8+ T cell-mediated clearance rapidly accelerating by over 48,000 times in 2 days. This complimented our analyses showing a negative correlation between the efficacy of innate and adaptive immune-mediated infected cell clearance, and that infection duration was driven by CD8+ T cell magnitude rather than efficacy and could be significantly prolonged if the ratio of CD8+ T cells to infected cells was sufficiently low. These links between important pathogen kinetics and host pathology enhance our ability to forecast disease progression, potential complications, and therapeutic efficacy.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided.

Article and author information

Author details

  1. Margaret A Myers

    Pediatrics, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Amanda P Smith

    Pediatrics, University of Tennessee Health Science C, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lindey C Lane

    Pediatrics, University of Tennessee Health Science C, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. David J Moquin

    Anesthesiology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rosemary Aogo

    Pediatrics, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stacie Woolard

    Flow Cytometry Core, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul Thomas

    Flow Cytometry Core, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Peter Vogel

    Veterinary Pathology Core, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Amber M Smith

    Pediatrics, University of Tennessee Health Science Center, Memphis, United States
    For correspondence
    amber.smith@uthsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7092-6904

Funding

National Institute of Allergy and Infectious Diseases (AI139088)

  • Margaret A Myers
  • Amanda P Smith
  • Lindey C Lane
  • Rosemary Aogo

National Institute of Allergy and Infectious Diseases (AI125324)

  • Margaret A Myers
  • Amanda P Smith
  • Lindey C Lane
  • David J Moquin
  • Amber M Smith

National Institute of Allergy and Infectious Diseases (AI100946)

  • Amber M Smith

American Lebanese Syrian Associated Charities (Internal Funding)

  • Margaret A Myers
  • Amanda P Smith
  • Lindey C Lane
  • David J Moquin
  • Stacie Woolard
  • Paul Thomas
  • Peter Vogel
  • Amber M Smith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were performed under protocols O2A-020 or 17-096 approved by the Animal Care and Use Committees at St. Jude Children's Research Hospital (SJCRH) or the University of Tennessee Health Science Center (UTHSC), respectively, under relevant institutional and American Veterinary Medical Association (AVMA) guidelines. All experimental procedures were performed in a biosafety level 2 facility that is accredited by the American Association for Laboratory Animal Science (AALAS).

Copyright

© 2021, Myers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,391
    views
  • 477
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margaret A Myers
  2. Amanda P Smith
  3. Lindey C Lane
  4. David J Moquin
  5. Rosemary Aogo
  6. Stacie Woolard
  7. Paul Thomas
  8. Peter Vogel
  9. Amber M Smith
(2021)
Dynamically linking influenza virus infection kinetics, lung injury, inflammation, and disease severity
eLife 10:e68864.
https://doi.org/10.7554/eLife.68864

Share this article

https://doi.org/10.7554/eLife.68864

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Computational and Systems Biology
    David B Blumenthal, Marta Lucchetta ... Martin H Schaefer
    Research Article Updated

    Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study biases affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations, and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.