Dynamically linking influenza virus infection kinetics, lung injury, inflammation, and disease severity

  1. Margaret A Myers
  2. Amanda P Smith
  3. Lindey C Lane
  4. David J Moquin
  5. Rosemary Aogo
  6. Stacie Woolard
  7. Paul Thomas
  8. Peter Vogel
  9. Amber M Smith  Is a corresponding author
  1. University of Tennessee Health Science Center, United States
  2. University of Tennessee Health Science C, United States
  3. Washington University School of Medicine, United States
  4. St Jude Children's Research Hospital, United States

Abstract

Influenza viruses cause a significant amount of morbidity and mortality. Understanding host immune control efficacy and how different factors influence lung injury and disease severity are critical. We established and validated dynamical connections between viral loads, infected cells, CD8+ T cells, lung injury, inflammation, and disease severity using an integrative mathematical model-experiment exchange. Our results showed that the dynamics of inflammation and virus-inflicted lung injury are distinct and nonlinearly related to disease severity, and that these two pathologic measurements can be independently predicted using the model-derived infected cell dynamics. Our findings further indicated that the relative CD8+ T cell dynamics paralleled the percent of the lung that had resolved with the rate of CD8+ T cell-mediated clearance rapidly accelerating by over 48,000 times in 2 days. This complimented our analyses showing a negative correlation between the efficacy of innate and adaptive immune-mediated infected cell clearance, and that infection duration was driven by CD8+ T cell magnitude rather than efficacy and could be significantly prolonged if the ratio of CD8+ T cells to infected cells was sufficiently low. These links between important pathogen kinetics and host pathology enhance our ability to forecast disease progression, potential complications, and therapeutic efficacy.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided.

Article and author information

Author details

  1. Margaret A Myers

    Pediatrics, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Amanda P Smith

    Pediatrics, University of Tennessee Health Science C, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lindey C Lane

    Pediatrics, University of Tennessee Health Science C, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. David J Moquin

    Anesthesiology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rosemary Aogo

    Pediatrics, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Stacie Woolard

    Flow Cytometry Core, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul Thomas

    Flow Cytometry Core, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Peter Vogel

    Veterinary Pathology Core, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Amber M Smith

    Pediatrics, University of Tennessee Health Science Center, Memphis, United States
    For correspondence
    amber.smith@uthsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7092-6904

Funding

National Institute of Allergy and Infectious Diseases (AI139088)

  • Margaret A Myers
  • Amanda P Smith
  • Lindey C Lane
  • Rosemary Aogo

National Institute of Allergy and Infectious Diseases (AI125324)

  • Margaret A Myers
  • Amanda P Smith
  • Lindey C Lane
  • David J Moquin
  • Amber M Smith

National Institute of Allergy and Infectious Diseases (AI100946)

  • Amber M Smith

American Lebanese Syrian Associated Charities (Internal Funding)

  • Margaret A Myers
  • Amanda P Smith
  • Lindey C Lane
  • David J Moquin
  • Stacie Woolard
  • Paul Thomas
  • Peter Vogel
  • Amber M Smith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joshua T Schiffer, Fred Hutchinson Cancer Research Center, United States

Ethics

Animal experimentation: All experimental procedures were performed under protocols O2A-020 or 17-096 approved by the Animal Care and Use Committees at St. Jude Children's Research Hospital (SJCRH) or the University of Tennessee Health Science Center (UTHSC), respectively, under relevant institutional and American Veterinary Medical Association (AVMA) guidelines. All experimental procedures were performed in a biosafety level 2 facility that is accredited by the American Association for Laboratory Animal Science (AALAS).

Version history

  1. Preprint posted: February 19, 2019 (view preprint)
  2. Received: March 28, 2021
  3. Accepted: July 14, 2021
  4. Accepted Manuscript published: July 20, 2021 (version 1)
  5. Version of Record published: August 17, 2021 (version 2)

Copyright

© 2021, Myers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,897
    views
  • 419
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margaret A Myers
  2. Amanda P Smith
  3. Lindey C Lane
  4. David J Moquin
  5. Rosemary Aogo
  6. Stacie Woolard
  7. Paul Thomas
  8. Peter Vogel
  9. Amber M Smith
(2021)
Dynamically linking influenza virus infection kinetics, lung injury, inflammation, and disease severity
eLife 10:e68864.
https://doi.org/10.7554/eLife.68864

Share this article

https://doi.org/10.7554/eLife.68864

Further reading

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Javier I Ottaviani, Virag Sagi-Kiss ... Gunter GC Kuhnle
    Research Article

    The chemical composition of foods is complex, variable, and dependent on many factors. This has a major impact on nutrition research as it foundationally affects our ability to adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate data on nutrient intake are key for investigating the associations and causal relationships between intake, health, and disease risk at the service of developing evidence-based dietary guidance that enables improvements in population health. Here, we exemplify the importance of this challenge by investigating the impact of food content variability on nutrition research using three bioactives as model: flavan-3-ols, (–)-epicatechin, and nitrate. Our results show that common approaches aimed at addressing the high compositional variability of even the same foods impede the accurate assessment of nutrient intake generally. This suggests that the results of many nutrition studies using food composition data are potentially unreliable and carry greater limitations than commonly appreciated, consequently resulting in dietary recommendations with significant limitations and unreliable impact on public health. Thus, current challenges related to nutrient intake assessments need to be addressed and mitigated by the development of improved dietary assessment methods involving the use of nutritional biomarkers.

    1. Cancer Biology
    2. Computational and Systems Biology
    Marie Breeur, George Stepaniants ... Vivian Viallon
    Research Article

    Untargeted metabolomic profiling through liquid chromatography-mass spectrometry (LC-MS) measures a vast array of metabolites within biospecimens, advancing drug development, disease diagnosis, and risk prediction. However, the low throughput of LC-MS poses a major challenge for biomarker discovery, annotation, and experimental comparison, necessitating the merging of multiple datasets. Current data pooling methods encounter practical limitations due to their vulnerability to data variations and hyperparameter dependence. Here, we introduce GromovMatcher, a flexible and user-friendly algorithm that automatically combines LC-MS datasets using optimal transport. By capitalizing on feature intensity correlation structures, GromovMatcher delivers superior alignment accuracy and robustness compared to existing approaches. This algorithm scales to thousands of features requiring minimal hyperparameter tuning. Manually curated datasets for validating alignment algorithms are limited in the field of untargeted metabolomics, and hence we develop a dataset split procedure to generate pairs of validation datasets to test the alignments produced by GromovMatcher and other methods. Applying our method to experimental patient studies of liver and pancreatic cancer, we discover shared metabolic features related to patient alcohol intake, demonstrating how GromovMatcher facilitates the search for biomarkers associated with lifestyle risk factors linked to several cancer types.