1. Computational and Systems Biology
  2. Physics of Living Systems
Download icon

First-principles model of optimal translation factors stoichiometry

  1. Jean-Benoît Lalanne
  2. Gene-Wei Li  Is a corresponding author
  1. University of Washington, United States
  2. Massachusetts Institute of Technology, United States
Research Article
  • Cited 0
  • Views 319
  • Annotations
Cite this article as: eLife 2021;10:e69222 doi: 10.7554/eLife.69222

Abstract

Enzymatic pathways have evolved uniquely preferred protein expression stoichiometry in living cells, but our ability to predict the optimal abundances from basic properties remains underdeveloped. Here we report a biophysical, first-principles model of growth optimization for core mRNA translation, a multi-enzyme system that involves proteins with a broadly conserved stoichiometry spanning two orders of magnitude. We show that predictions from maximization of ribosome usage in a parsimonious flux model constrained by proteome allocation agree with the conserved ratios of translation factors. The analytical solutions, without free parameters, provide an interpretable framework for the observed hierarchy of expression levels based on simple biophysical properties, such as diffusion constants and protein sizes. Our results provide an intuitive and quantitative understanding for the construction of a central process of life, as well as a path toward rational design of pathway-specific enzyme expression stoichiometry.

Data availability

Already publicly available ribosome profiling datasets were used (GEO accessions GSE95211, GSE53767, and GSE139983).Computer scripts (Matlab) used for this study were submitted with the present work as computer_code_20210721.zip.Supplementary Files 1-4 contain the numerical data to reproduce figures.

The following previously published data sets were used

Article and author information

Author details

  1. Jean-Benoît Lalanne

    Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gene-Wei Li

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    gwli@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7036-8511

Funding

National Institutes of Health (R35GM124732)

  • Gene-Wei Li

National Science Foundation (MCB 1844668)

  • Gene-Wei Li

Richard and Susan Smith Family Foundation (Smith Odyssey Award and Smith Family Award)

  • Gene-Wei Li

Pew Charitable Trusts (Pew Scholar)

  • Gene-Wei Li

Alfred P. Sloan Foundation (Sloan Research Fellowship)

  • Gene-Wei Li

Kinship Foundation (Searle Scholar)

  • Gene-Wei Li

National Research Council Canada (Doctoral fellowship)

  • Jean-Benoît Lalanne

Howard Hughes Medical Institute (International Student Fellowship)

  • Jean-Benoît Lalanne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pierre Sens, Institut Curie, PSL Research University, CNRS, France

Publication history

  1. Received: April 8, 2021
  2. Accepted: September 29, 2021
  3. Accepted Manuscript published: September 30, 2021 (version 1)

Copyright

© 2021, Lalanne & Li

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 319
    Page views
  • 86
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Olivier Thomine et al.
    Research Article

    Simulating nationwide realistic individual movements with a detailed geographical structure can help optimize public health policies. However, existing tools have limited resolution or can only account for a limited number of agents. We introduce Epidemap, a new framework that can capture the daily movement of more than 60 million people in a country at a building-level resolution in a realistic and computationally efficient way. By applying it to the case of an infectious disease spreading in France, we uncover hitherto neglected effects, such as the emergence of two distinct peaks in the daily number of cases or the importance of local density in the timing of arrival of the epidemic. Finally, we show that the importance of super-spreading events strongly varies over time.

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Zelin Liu et al.
    Tools and Resources

    Circular RNAs (circRNAs) act through multiple mechanisms via their sequence features to fine-tune gene expression networks. Due to overlapping sequences with linear cognates, identifying internal sequences of circRNAs remains a challenge, which hinders a comprehensive understanding of circRNA functions and mechanisms. Here, based on rolling circular reverse transcription (RCRT) and nanopore sequencing, we developed circFL-seq, a full-length circRNA sequencing method, to profile circRNA at the isoform level. With a customized computational pipeline to directly identify full-length sequences from rolling circular reads, we reconstructed 77,606 high-quality circRNAs from seven human cell lines and two human tissues. circFL-seq benefits from rolling circles and long-read sequencing, and the results showed more than tenfold enrichment of circRNA reads and advantages for both detection and quantification at the isoform level compared to those for short-read RNA sequencing. The concordance of the RT-qPCR and circFL-seq results for the identification of differential alternative splicing suggested wide application prospects for functional studies of internal variants in circRNAs. Moreover, the detection of fusion circRNAs at the omics scale may further expand the application of circFL-seq. Together, the accurate identification and quantification of full-length circRNAs make circFL-seq a potential tool for large-scale screening of functional circRNAs.