First-principles model of optimal translation factors stoichiometry

  1. Jean-Benoît Lalanne
  2. Gene-Wei Li  Is a corresponding author
  1. University of Washington, United States
  2. Massachusetts Institute of Technology, United States

Abstract

Enzymatic pathways have evolved uniquely preferred protein expression stoichiometry in living cells, but our ability to predict the optimal abundances from basic properties remains underdeveloped. Here we report a biophysical, first-principles model of growth optimization for core mRNA translation, a multi-enzyme system that involves proteins with a broadly conserved stoichiometry spanning two orders of magnitude. We show that predictions from maximization of ribosome usage in a parsimonious flux model constrained by proteome allocation agree with the conserved ratios of translation factors. The analytical solutions, without free parameters, provide an interpretable framework for the observed hierarchy of expression levels based on simple biophysical properties, such as diffusion constants and protein sizes. Our results provide an intuitive and quantitative understanding for the construction of a central process of life, as well as a path toward rational design of pathway-specific enzyme expression stoichiometry.

Data availability

Already publicly available ribosome profiling datasets were used (GEO accessions GSE95211, GSE53767, and GSE139983).Computer scripts (Matlab) used for this study were submitted with the present work as computer_code_20210721.zip.Supplementary Files 1-4 contain the numerical data to reproduce figures.

The following previously published data sets were used

Article and author information

Author details

  1. Jean-Benoît Lalanne

    Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gene-Wei Li

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    gwli@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7036-8511

Funding

National Institutes of Health (R35GM124732)

  • Gene-Wei Li

National Science Foundation (MCB 1844668)

  • Gene-Wei Li

Richard and Susan Smith Family Foundation (Smith Odyssey Award and Smith Family Award)

  • Gene-Wei Li

Pew Charitable Trusts (Pew Scholar)

  • Gene-Wei Li

Alfred P. Sloan Foundation (Sloan Research Fellowship)

  • Gene-Wei Li

Kinship Foundation (Searle Scholar)

  • Gene-Wei Li

National Research Council Canada (Doctoral fellowship)

  • Jean-Benoît Lalanne

Howard Hughes Medical Institute (International Student Fellowship)

  • Jean-Benoît Lalanne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pierre Sens, Institut Curie, PSL Research University, CNRS, France

Version history

  1. Preprint posted: April 4, 2021 (view preprint)
  2. Received: April 8, 2021
  3. Accepted: September 29, 2021
  4. Accepted Manuscript published: September 30, 2021 (version 1)
  5. Version of Record published: October 21, 2021 (version 2)

Copyright

© 2021, Lalanne & Li

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,250
    views
  • 219
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jean-Benoît Lalanne
  2. Gene-Wei Li
(2021)
First-principles model of optimal translation factors stoichiometry
eLife 10:e69222.
https://doi.org/10.7554/eLife.69222

Share this article

https://doi.org/10.7554/eLife.69222

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Seo-Gyeong Bae, Guo Nan Yin ... Jihwan Park
    Research Article

    Erectile dysfunction (ED) affects a significant proportion of men aged 40–70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition. Pericytes are vital in penile erection; however, their dysfunction due to diabetes remains unclear. In this study, we performed single-cell RNA sequencing to understand the cellular landscape of cavernous tissues and cell type-specific transcriptional changes in diabetic ED. We found a decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in diabetic fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. Moreover, the newly identified pericyte-specific marker, Limb Bud-Heart (Lbh), in mouse and human cavernous tissues, clearly distinguishing pericytes from smooth muscle cells. Cell-cell interaction analysis revealed that pericytes are involved in angiogenesis, adhesion, and migration by communicating with other cell types in the corpus cavernosum; however, these interactions were highly reduced under diabetic conditions. Lbh expression is low in diabetic pericytes, and overexpression of LBH prevents erectile function by regulating neurovascular regeneration. Furthermore, the LBH-interacting proteins (Crystallin Alpha B and Vimentin) were identified in mouse cavernous pericytes through LC-MS/MS analysis, indicating that their interactions were critical for maintaining pericyte function. Thus, our study reveals novel targets and insights into the pathogenesis of ED in patients with diabetes.

    1. Computational and Systems Biology
    Rebecca A Deek, Siyuan Ma ... Hongzhe Li
    Review Article

    Large-scale microbiome studies are progressively utilizing multiomics designs, which include the collection of microbiome samples together with host genomics and metabolomics data. Despite the increasing number of data sources, there remains a bottleneck in understanding the relationships between different data modalities due to the limited number of statistical and computational methods for analyzing such data. Furthermore, little is known about the portability of general methods to the metagenomic setting and few specialized techniques have been developed. In this review, we summarize and implement some of the commonly used methods. We apply these methods to real data sets where shotgun metagenomic sequencing and metabolomics data are available for microbiome multiomics data integration analysis. We compare results across methods, highlight strengths and limitations of each, and discuss areas where statistical and computational innovation is needed.