Health: Going beyond lifestyle factors

Wealth and inequality impact blood pressure in a population with the lowest risk of heart disease in the world.
  1. Milagros Ruiz  Is a corresponding author
  1. Research Department of Epidemiology and Public Health, University College London, United Kingdom

The idea of a ‘social ladder’ may be metaphorical, but actual and perceived societal ranking have real consequences for the health of an individual (Adler et al., 2000). How social structure influences health and disease is overwhelmingly studied in high-income countries, where coronary heart disease (CHD for short) is the leading cause of death (Institute for Health Metrics and Evaluation, 2019).

In these societies, the relationship between an individual’s social position and their CHD risk is astonishingly consistent, with disadvantaged populations being more likely to suffer from the disease and to die from it (Schultz et al., 2018). Despite the clarity of this evidence, the public health workforce has not yet reached a unified consensus on why these inequalities occur, and what can be done to reduce them (Marmot, 2004).

Lifestyle factors such as diet, sedentarism or smoking, and their ensuing effects like hypertension, only partially account for the excess burden of CHD in disadvantaged groups (Schultz et al., 2018). Yet primary prevention efforts appear to focus on these health behaviours over other factors linked to social inequality. In fact, targeting lifestyle alone is likely to exacerbate inequalities in post-industrial societies (Marmot, 2004).

Investigating inequalities in populations that have not adopted Western diets and activity levels – a challenging undertaking given the proliferation of this lifestyle worldwide – could be a way to confront the underlying assumption that behavioural differences are responsible for the observed inequality in CHD (Kopp, 2019). Now, in eLife, Adrian Jaeggi (University of Zurich and Emory University), Aaron Blackwell (Washington State University) and co-workers based in the United States, France and Germany report the most comprehensive study on social structure and health in a pre-industrial society in the Bolivian Amazon known as the Tsimane (Jaeggi et al., 2021). 

This population relies on subsistence farming supplemented by hunter-gatherer practices, resulting in an extremely physically active life and a diet that is rich in fibres and micronutrients. In turn, they have remarkably modest rates of obesity and hypertension, and the lowest prevalence of biological markers for poor artery health ever recorded around the world (Pontzer et al., 2018). Thus, any putative relationship between social position and heart health is unlikely to be the result of differences in health behaviour.

Overall, Jaeggi et al. discovered consistent links between wealth-related circumstances and blood pressure in the Tsimane: the poorer the individual, the higher their blood pressure. In people over the age of 15, the pressure on artery walls during and between heartbeats was lower in those with higher household wealth, that is, those with more common household assets: this can include traditional goods made from local organic materials, industrially produced items acquired through trade or purchase, and livestock. The researchers also investigated the association between wealth inequality and overall health in several geographically separated communities – defined as clusters of households connected through kin networks that produce or consume food together. They found that communities with greater inequality between rich and poor members had higher blood pressure.

Most Tsimane have normal blood pressure. This means that associations between wealth and individual blood pressure within communities, or between wealth inequality and overall blood pressure across communities both capture variations below a clinically significant level (Jaeggi et al., 2021; Pontzer et al., 2018). However, these findings are not inconsequential: in post-industrial societies, small reductions in blood pressure in the overall population have proved effective in lowering CHD incidence (Cook et al., 1995).

If no members of the Tsimane population live an unhealthy lifestyle, and if they all have little to no access to healthcare, then what drives higher blood pressure in poorer adults and in more unequal communities? Psychosocial mechanisms and pathways to poor health may provide an answer, drawing on how feelings which result from inequality, domination, or subordination may directly alter biological processes (Bartley, 2017). Social hierarchies, maintained by societal arrangements of power, lead to disadvantaged populations being disproportionally exposed to psychosocial stressors such as lack of community support, low control and autonomy, and an imbalance between effort and reward. In turn, psychosocial stress can have a severe impact on the body, triggering a sustained fight or flight response and altering the hormone system that controls biological reactions to stress (Bartley, 2017; Jaeggi et al., 2021).

Jaeggi et al. therefore tested how psychosocial factors related to unequal wealth and wealth distribution may have influenced feelings and interactions among the Tsimane (e.g., depression, social conflicts), or altered their body chemistry (e.g., the level of the stress hormone cortisol in urine). The analyses highlighted a weak connection between these factors and increased levels of blood pressure in individuals who possess less wealth or are from more unequal communities. However, this link may only be weakly supported by the analyses because the markers used could have insufficiently measured psychosocial stress. It may therefore be worth also examining whether a pathway can be identified when looking at C-reactive protein, an inflammatory biomarker for blood pressure which is relatively elevated in the Tsimane population (Pontzer et al., 2018). Yet, detecting these small effects in such a healthy society requires a large sample size, and psychosocial markers were only collected in a subset of participants with blood pressure data: thus, it is more likely that the analyses were underpowered.

The Tsimane face growing exposure to psychosocial stress as contact with ethnic majority groups increase, and their economy becomes more integrated. These developments urge researchers to explore individual-level and macro-level mechanisms for health inequality in the Tsimane, and remind us, once again, to look beyond lifestyle when tackling public health problems.


  1. Book
    1. Bartley M
    Health Inequality: An Introduction to Concepts, Theories and Methods
    Cambridge Polity Press.

Article and author information

Author details

  1. Milagros Ruiz

    Milagros Ruiz is in the Research Department of Epidemiology and Public Health, University College London, London, United Kingdom

    For correspondence
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7492-9873

Publication history

  1. Version of Record published: June 24, 2021 (version 1)


© 2021, Ruiz

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 698
    Page views
  • 48
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Milagros Ruiz
Health: Going beyond lifestyle factors
eLife 10:e70548.

Further reading

    1. Epidemiology and Global Health
    2. Evolutionary Biology
    Fabrizio Menardo
    Research Article

    Detecting factors associated with transmission is important to understand disease epidemics, and to design effective public health measures. Clustering and terminal branch lengths (TBL) analyses are commonly applied to genomic data sets of Mycobacterium tuberculosis (MTB) to identify sub-populations with increased transmission. Here, I used a simulation-based approach to investigate what epidemiological processes influence the results of clustering and TBL analyses, and whether differences in transmission can be detected with these methods. I simulated MTB epidemics with different dynamics (latency, infectious period, transmission rate, basic reproductive number R0, sampling proportion, sampling period, and molecular clock), and found that all considered factors, except for the length of the infectious period, affect the results of clustering and TBL distributions. I show that standard interpretations of this type of analyses ignore two main caveats: (1) clustering results and TBL depend on many factors that have nothing to do with transmission, (2) clustering results and TBL do not tell anything about whether the epidemic is stable, growing, or shrinking, unless all the additional parameters that influence these metrics are known, or assumed identical between sub-populations. An important consequence is that the optimal SNP threshold for clustering depends on the epidemiological conditions, and that sub-populations with different epidemiological characteristics should not be analyzed with the same threshold. Finally, these results suggest that different clustering rates and TBL distributions, that are found consistently between different MTB lineages, are probably due to intrinsic bacterial factors, and do not indicate necessarily differences in transmission or evolutionary success.

    1. Epidemiology and Global Health
    2. Evolutionary Biology
    Marta Matuszewska et al.
    Research Article

    Mobile genetic elements (MGEs) are agents of horizontal gene transfer in bacteria, but can also be vertically inherited by daughter cells. Establishing the dynamics that led to contemporary patterns of MGEs in bacterial genomes is central to predicting the emergence and evolution of novel and resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex (CC) 398 is the dominant MRSA in European livestock and a growing cause of human infections. Previous studies have identified three categories of MGEs whose presence or absence distinguishes livestock-associated CC398 from a closely related and less antibiotic-resistant human-associated population. Here, we fully characterise the evolutionary dynamics of these MGEs using a collection of 1180 CC398 genomes, sampled from livestock and humans, over 27 years. We find that the emergence of livestock-associated CC398 coincided with the acquisition of a Tn916 transposon carrying a tetracycline resistance gene, which has been stably inherited for 57 years. This was followed by the acquisition of a type V SCCmec that carries methicillin, tetracycline, and heavy metal resistance genes, which has been maintained for 35 years, with occasional truncations and replacements with type IV SCCmec. In contrast, a class of prophages that carry a human immune evasion gene cluster and that are largely absent from livestock-associated CC398 have been repeatedly gained and lost in both human- and livestock-associated CC398. These contrasting dynamics mean that when livestock-associated MRSA is transmitted to humans, adaptation to the human host outpaces loss of antibiotic resistance. In addition, the stable inheritance of resistance-associated MGEs suggests that the impact of ongoing reductions in antibiotic and zinc oxide use in European farms on livestock-associated MRSA will be slow to be realised.