1. Epidemiology and Global Health
  2. Medicine
Download icon

Health: Going beyond lifestyle factors

  1. Milagros Ruiz  Is a corresponding author
  1. Research Department of Epidemiology and Public Health, University College London, United Kingdom
Insight
  • Cited 0
  • Views 616
  • Annotations
Cite this article as: eLife 2021;10:e70548 doi: 10.7554/eLife.70548

Abstract

Wealth and inequality impact blood pressure in a population with the lowest risk of heart disease in the world.

Main text

The idea of a ‘social ladder’ may be metaphorical, but actual and perceived societal ranking have real consequences for the health of an individual (Adler et al., 2000). How social structure influences health and disease is overwhelmingly studied in high-income countries, where coronary heart disease (CHD for short) is the leading cause of death (Institute for Health Metrics and Evaluation, 2019).

In these societies, the relationship between an individual’s social position and their CHD risk is astonishingly consistent, with disadvantaged populations being more likely to suffer from the disease and to die from it (Schultz et al., 2018). Despite the clarity of this evidence, the public health workforce has not yet reached a unified consensus on why these inequalities occur, and what can be done to reduce them (Marmot, 2004).

Lifestyle factors such as diet, sedentarism or smoking, and their ensuing effects like hypertension, only partially account for the excess burden of CHD in disadvantaged groups (Schultz et al., 2018). Yet primary prevention efforts appear to focus on these health behaviours over other factors linked to social inequality. In fact, targeting lifestyle alone is likely to exacerbate inequalities in post-industrial societies (Marmot, 2004).

Investigating inequalities in populations that have not adopted Western diets and activity levels – a challenging undertaking given the proliferation of this lifestyle worldwide – could be a way to confront the underlying assumption that behavioural differences are responsible for the observed inequality in CHD (Kopp, 2019). Now, in eLife, Adrian Jaeggi (University of Zurich and Emory University), Aaron Blackwell (Washington State University) and co-workers based in the United States, France and Germany report the most comprehensive study on social structure and health in a pre-industrial society in the Bolivian Amazon known as the Tsimane (Jaeggi et al., 2021). 

This population relies on subsistence farming supplemented by hunter-gatherer practices, resulting in an extremely physically active life and a diet that is rich in fibres and micronutrients. In turn, they have remarkably modest rates of obesity and hypertension, and the lowest prevalence of biological markers for poor artery health ever recorded around the world (Pontzer et al., 2018). Thus, any putative relationship between social position and heart health is unlikely to be the result of differences in health behaviour.

Overall, Jaeggi et al. discovered consistent links between wealth-related circumstances and blood pressure in the Tsimane: the poorer the individual, the higher their blood pressure. In people over the age of 15, the pressure on artery walls during and between heartbeats was lower in those with higher household wealth, that is, those with more common household assets: this can include traditional goods made from local organic materials, industrially produced items acquired through trade or purchase, and livestock. The researchers also investigated the association between wealth inequality and overall health in several geographically separated communities – defined as clusters of households connected through kin networks that produce or consume food together. They found that communities with greater inequality between rich and poor members had higher blood pressure.

Most Tsimane have normal blood pressure. This means that associations between wealth and individual blood pressure within communities, or between wealth inequality and overall blood pressure across communities both capture variations below a clinically significant level (Jaeggi et al., 2021; Pontzer et al., 2018). However, these findings are not inconsequential: in post-industrial societies, small reductions in blood pressure in the overall population have proved effective in lowering CHD incidence (Cook et al., 1995).

If no members of the Tsimane population live an unhealthy lifestyle, and if they all have little to no access to healthcare, then what drives higher blood pressure in poorer adults and in more unequal communities? Psychosocial mechanisms and pathways to poor health may provide an answer, drawing on how feelings which result from inequality, domination, or subordination may directly alter biological processes (Bartley, 2017). Social hierarchies, maintained by societal arrangements of power, lead to disadvantaged populations being disproportionally exposed to psychosocial stressors such as lack of community support, low control and autonomy, and an imbalance between effort and reward. In turn, psychosocial stress can have a severe impact on the body, triggering a sustained fight or flight response and altering the hormone system that controls biological reactions to stress (Bartley, 2017; Jaeggi et al., 2021).

Jaeggi et al. therefore tested how psychosocial factors related to unequal wealth and wealth distribution may have influenced feelings and interactions among the Tsimane (e.g., depression, social conflicts), or altered their body chemistry (e.g., the level of the stress hormone cortisol in urine). The analyses highlighted a weak connection between these factors and increased levels of blood pressure in individuals who possess less wealth or are from more unequal communities. However, this link may only be weakly supported by the analyses because the markers used could have insufficiently measured psychosocial stress. It may therefore be worth also examining whether a pathway can be identified when looking at C-reactive protein, an inflammatory biomarker for blood pressure which is relatively elevated in the Tsimane population (Pontzer et al., 2018). Yet, detecting these small effects in such a healthy society requires a large sample size, and psychosocial markers were only collected in a subset of participants with blood pressure data: thus, it is more likely that the analyses were underpowered.

The Tsimane face growing exposure to psychosocial stress as contact with ethnic majority groups increase, and their economy becomes more integrated. These developments urge researchers to explore individual-level and macro-level mechanisms for health inequality in the Tsimane, and remind us, once again, to look beyond lifestyle when tackling public health problems.

References

  1. Book
    1. Bartley M
    (2017)
    Health Inequality: An Introduction to Concepts, Theories and Methods
    Cambridge Polity Press.

Article and author information

Author details

  1. Milagros Ruiz

    Milagros Ruiz is in the Research Department of Epidemiology and Public Health, University College London, London, United Kingdom

    For correspondence
    m.a.ruiz@ucl.ac.uk
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7492-9873

Publication history

  1. Version of Record published: June 24, 2021 (version 1)

Copyright

© 2021, Ruiz

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 616
    Page views
  • 42
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Olivier Thomine et al.
    Research Article

    Simulating nationwide realistic individual movements with a detailed geographical structure can help optimize public health policies. However, existing tools have limited resolution or can only account for a limited number of agents. We introduce Epidemap, a new framework that can capture the daily movement of more than 60 million people in a country at a building-level resolution in a realistic and computationally efficient way. By applying it to the case of an infectious disease spreading in France, we uncover hitherto neglected effects, such as the emergence of two distinct peaks in the daily number of cases or the importance of local density in the timing of arrival of the epidemic. Finally, we show that the importance of super-spreading events strongly varies over time.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Paul Z Chen et al.
    Research Advance Updated

    Background:

    Previously, we conducted a systematic review and analyzed the respiratory kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Chen et al., 2021). How age, sex, and coronavirus disease 2019 (COVID-19) severity interplay to influence the shedding dynamics of SARS-CoV-2, however, remains poorly understood.

    Methods:

    We updated our systematic dataset, collected individual case characteristics, and conducted stratified analyses of SARS-CoV-2 shedding dynamics in the upper (URT) and lower respiratory tract (LRT) across COVID-19 severity, sex, and age groups (aged 0–17 years, 18–59 years, and 60 years or older).

    Results:

    The systematic dataset included 1266 adults and 136 children with COVID-19. Our analyses indicated that high, persistent LRT shedding of SARS-CoV-2 characterized severe COVID-19 in adults. Severe cases tended to show slightly higher URT shedding post-symptom onset, but similar rates of viral clearance, when compared to nonsevere infections. After stratifying for disease severity, sex and age (including child vs. adult) were not predictive of respiratory shedding. The estimated accuracy for using LRT shedding as a prognostic indicator for COVID-19 severity was up to 81%, whereas it was up to 65% for URT shedding.

    Conclusions:

    Virological factors, especially in the LRT, facilitate the pathogenesis of severe COVID-19. Disease severity, rather than sex or age, predicts SARS-CoV-2 kinetics. LRT viral load may prognosticate COVID-19 severity in patients before the timing of deterioration and should do so more accurately than URT viral load.

    Funding:

    Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, NSERC Senior Industrial Research Chair, and the Toronto COVID-19 Action Fund.