Wnt signaling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells

  1. Benjamin D Gastfriend
  2. Hideaki Nishihara
  3. Scott G Canfield
  4. Koji L Foreman
  5. Britta Englehardt
  6. Sean P Palecek  Is a corresponding author
  7. Eric V Shusta  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. University of Bern, Switzerland

Abstract

Endothelial cells (ECs) in the central nervous system (CNS) acquire their specialized blood-brain barrier (BBB) properties in response to extrinsic signals, with Wnt/β-catenin signaling coordinating multiple aspects of this process. Our knowledge of CNS EC development has been advanced largely by animal models, and human pluripotent stem cells (hPSCs) offer the opportunity to examine BBB development in an in vitro human system. Here we show that activation of Wnt signaling in hPSC-derived naïve endothelial progenitors, but not in matured ECs, leads to robust acquisition of canonical BBB phenotypes including expression of GLUT-1, increased claudin-5, decreased PLVAP and decreased permeability. RNA-seq revealed a transcriptome profile resembling ECs with CNS-like characteristics, including Wnt-upregulated expression of LEF1, APCDD1, and ZIC3. Together, our work defines effects of Wnt activation in naïve ECs and establishes an improved hPSC-based model for interrogation of CNS barriergenesis.

Data availability

RNA-seq data have been deposited in GEO under accession number GSE173206.

The following data sets were generated
The following previously published data sets were used
    1. Sabbagh MF
    2. Nathans J
    (2020) A genome-wide view of the de-differentiation of central nervous system endothelial cells in culture
    GSM4160534 GSM4160535 GSM4160536 GSM4160537 GSM4160538 GSM4160539 GSM4160540 GSM4160541 GSM4160542 GSM4160543.

Article and author information

Author details

  1. Benjamin D Gastfriend

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
    Competing interests
    Benjamin D Gastfriend, Inventor on a provisional US patent application (63/185815) related to this work..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4677-1455
  2. Hideaki Nishihara

    University of Bern, Bern, Switzerland
    Competing interests
    Hideaki Nishihara, Inventor on a provisional US patent application (63/185815) related to this work..
  3. Scott G Canfield

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  4. Koji L Foreman

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  5. Britta Englehardt

    University of Bern, Bern, Switzerland
    Competing interests
    Britta Englehardt, Inventor on a provisional US patent application (63/185815) related to this work..
  6. Sean P Palecek

    Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
    For correspondence
    sppalecek@wisc.edu
    Competing interests
    Sean P Palecek, Inventor on a provisional US patent application (63/185815) related to this work..
  7. Eric V Shusta

    Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
    For correspondence
    eshusta@wisc.edu
    Competing interests
    Eric V Shusta, Inventor on a provisional US patent application (63/185815) related to this work..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4297-0158

Funding

National Institutes of Health (R01 NS103844)

  • Sean P Palecek
  • Eric V Shusta

National Institutes of Health (R01 NS107461)

  • Sean P Palecek
  • Eric V Shusta

National Institutes of Health (T32 GM008349)

  • Benjamin D Gastfriend

National Science Foundation (1747503)

  • Benjamin D Gastfriend

Swiss National Science Foundation (310030_189080)

  • Britta Englehardt

Bern Center for Precision Medicine

  • Britta Englehardt

Japan Society for the Promotion of Science (Overseas Research Fellowship)

  • Hideaki Nishihara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stefan Liebner, University Hospital, Goethe University Frankfurt, Germany

Version history

  1. Preprint posted: May 14, 2021 (view preprint)
  2. Received: June 4, 2021
  3. Accepted: November 9, 2021
  4. Accepted Manuscript published: November 10, 2021 (version 1)
  5. Accepted Manuscript updated: November 12, 2021 (version 2)
  6. Version of Record published: December 10, 2021 (version 3)

Copyright

© 2021, Gastfriend et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,384
    views
  • 446
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin D Gastfriend
  2. Hideaki Nishihara
  3. Scott G Canfield
  4. Koji L Foreman
  5. Britta Englehardt
  6. Sean P Palecek
  7. Eric V Shusta
(2021)
Wnt signaling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells
eLife 10:e70992.
https://doi.org/10.7554/eLife.70992

Share this article

https://doi.org/10.7554/eLife.70992

Further reading

    1. Developmental Biology
    Siyuan Cheng, Ivan Fan Xia ... Stefania Nicoli
    Research Article

    Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries and play a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular disease and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating dedifferentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that arterial specification of CoW endothelial cells (ECs) occurs after their migration from cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors after they were recruited to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity and wall shear stress. Furthermore, pulsatile flow induces differentiation of human brain PDGFRB+ mural cells into VSMCs, and blood flow is required for VSMC differentiation on zebrafish CoW arteries. Consistently, flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight blood flow activation of endothelial klf2a as a mechanism regulating initial VSMC differentiation on vertebrate brain arteries.

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.