Wnt signaling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells

  1. Benjamin D Gastfriend
  2. Hideaki Nishihara
  3. Scott G Canfield
  4. Koji L Foreman
  5. Britta Engelhardt
  6. Sean P Palecek  Is a corresponding author
  7. Eric V Shusta  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. University of Bern, Switzerland

Abstract

Endothelial cells (ECs) in the central nervous system (CNS) acquire their specialized blood-brain barrier (BBB) properties in response to extrinsic signals, with Wnt/β-catenin signaling coordinating multiple aspects of this process. Our knowledge of CNS EC development has been advanced largely by animal models, and human pluripotent stem cells (hPSCs) offer the opportunity to examine BBB development in an in vitro human system. Here we show that activation of Wnt signaling in hPSC-derived naïve endothelial progenitors, but not in matured ECs, leads to robust acquisition of canonical BBB phenotypes including expression of GLUT-1, increased claudin-5, decreased PLVAP and decreased permeability. RNA-seq revealed a transcriptome profile resembling ECs with CNS-like characteristics, including Wnt-upregulated expression of LEF1, APCDD1, and ZIC3. Together, our work defines effects of Wnt activation in naïve ECs and establishes an improved hPSC-based model for interrogation of CNS barriergenesis.

Data availability

RNA-seq data have been deposited in GEO under accession number GSE173206.

The following data sets were generated
The following previously published data sets were used
    1. Sabbagh MF
    2. Nathans J
    (2020) A genome-wide view of the de-differentiation of central nervous system endothelial cells in culture
    GSM4160534 GSM4160535 GSM4160536 GSM4160537 GSM4160538 GSM4160539 GSM4160540 GSM4160541 GSM4160542 GSM4160543.

Article and author information

Author details

  1. Benjamin D Gastfriend

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
    Competing interests
    Benjamin D Gastfriend, Inventor on a provisional US patent application (63/185815) related to this work..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4677-1455
  2. Hideaki Nishihara

    University of Bern, Bern, Switzerland
    Competing interests
    Hideaki Nishihara, Inventor on a provisional US patent application (63/185815) related to this work..
  3. Scott G Canfield

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  4. Koji L Foreman

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  5. Britta Engelhardt

    University of Bern, Bern, Switzerland
    Competing interests
    Britta Engelhardt, Inventor on a provisional US patent application (63/185815) related to this work..
  6. Sean P Palecek

    Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
    For correspondence
    sppalecek@wisc.edu
    Competing interests
    Sean P Palecek, Inventor on a provisional US patent application (63/185815) related to this work..
  7. Eric V Shusta

    Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
    For correspondence
    eshusta@wisc.edu
    Competing interests
    Eric V Shusta, Inventor on a provisional US patent application (63/185815) related to this work..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4297-0158

Funding

National Institutes of Health (R01 NS103844)

  • Sean P Palecek
  • Eric V Shusta

National Institutes of Health (R01 NS107461)

  • Sean P Palecek
  • Eric V Shusta

National Institutes of Health (T32 GM008349)

  • Benjamin D Gastfriend

National Science Foundation (1747503)

  • Benjamin D Gastfriend

Swiss National Science Foundation (310030_189080)

  • Britta Engelhardt

Bern Center for Precision Medicine

  • Britta Engelhardt

Japan Society for the Promotion of Science (Overseas Research Fellowship)

  • Hideaki Nishihara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Gastfriend et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,630
    views
  • 471
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin D Gastfriend
  2. Hideaki Nishihara
  3. Scott G Canfield
  4. Koji L Foreman
  5. Britta Engelhardt
  6. Sean P Palecek
  7. Eric V Shusta
(2021)
Wnt signaling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells
eLife 10:e70992.
https://doi.org/10.7554/eLife.70992

Share this article

https://doi.org/10.7554/eLife.70992

Further reading

    1. Cell Biology
    2. Developmental Biology
    Yi Sun, Zhe Chen ... Chengtian Zhao
    Short Report

    How cells regulate the size of their organelles remains a fundamental question in cell biology. Cilia, with their simple structure and surface localization, provide an ideal model for investigating organelle size control. However, most studies on cilia length regulation are primarily performed on several single-celled organisms. In contrast, the mechanism of length regulation in cilia across diverse cell types within multicellular organisms remains a mystery. Similar to humans, zebrafish contain diverse types of cilia with variable lengths. Taking advantage of the transparency of zebrafish embryos, we conducted a comprehensive investigation into intraflagellar transport (IFT), an essential process for ciliogenesis. By generating a transgenic line carrying Ift88-GFP transgene, we observed IFT in multiple types of cilia with varying lengths. Remarkably, cilia exhibited variable IFT speeds in different cell types, with longer cilia exhibiting faster IFT speeds. This increased IFT speed in longer cilia is likely not due to changes in common factors that regulate IFT, such as motor selection, BBSome proteins, or tubulin modification. Interestingly, longer cilia in the ear cristae tend to form larger IFT compared to shorter spinal cord cilia. Reducing the size of IFT particles by knocking down Ift88 slowed IFT speed and resulted in the formation of shorter cilia. Our study proposes an intriguing model of cilia length regulation via controlling IFT speed through the modulation of the size of the IFT complex. This discovery may provide further insights into our understanding of how organelle size is regulated in higher vertebrates.

    1. Developmental Biology
    2. Neuroscience
    Xingsen Zhao, Qihang Sun ... Xuekun Li
    Research Article

    Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25–27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.