Abstract

The effective reproductive number Re is a key indicator of the growth of an epidemic. Since the start of the SARS-CoV-2 pandemic, many methods and online dashboards have sprung up to monitor this number through time. However, these methods are not always thoroughly tested, correctly placed in time, or are overly confident during high incidence periods. Here, we present a method for timely estimation of Re, applied to COVID-19 epidemic data from 170 countries. We thoroughly evaluate the method on simulated data, and present an intuitive web interface for interactive data exploration. We show that, in early 2020, in the majority of countries the estimated Re dropped below 1 only after the introduction of major non-pharmaceutical interventions. For Europe the implementation of non-pharmaceutical interventions was broadly associated with reductions in the estimated Re. Globally though, relaxing non-pharmaceutical interventions had more varied effects on subsequent Re estimates. Our framework is useful to inform governments and the general public on the status of epidemics in their country, and is used as the official source of Re estimates for SARS-CoV-2 in Switzerland. It further allows detailed comparison between countries and in relation to covariates such as implemented public health policies, mobility, behaviour, or weather data.

Data availability

- The source code of the pipeline is available at https://github.com/covid-19-Re/shiny-dailyRe ; this includes a script to download the required incidence data from public sources.- The resulting estimates (updated daily) are available at: https://github.com/covid-19-Re/dailyRe-Data- The code and data necessary to reproduce the figures in the paper is at: https://github.com/covid-19-Re/paper-codeThe Swiss estimates on our dashboard, and shown in Figs. 2, S9-S11 of the paper, use linelist data provided to us by the Federal Office of Public Health (FOPH) to inform the time-varying delay distributions. This data contains one row per infected individual, with information on their age, date of infection, postal code, etc. Although the data is anonymized, it could be linked directly to particular individuals, and this is a privacy concern. As such, we are not allowed to share the original data publicly. We are discussing with the FOPH whether we can share an aggregated form of the original data (for instance the time-varying delay distribution itself), but have already included the processed data (i.e. the estimates plotted in the figure) on https://github.com/covid-19-Re/paper-code for now.To obtain access to the original data, interested individuals should contact the FOPH directly. To the best of our knowledge, no official application or access granting procedure is in place, and applications will likely be assessed on a case by case basis.

Article and author information

Author details

  1. Jana Sanne Huisman

    Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
    For correspondence
    jana.huisman@env.ethz.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1782-8109
  2. Jérémie Scire

    Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
    Competing interests
    No competing interests declared.
  3. Daniel C Angst

    Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6512-4595
  4. Jinzhou Li

    Department of Mathematics, ETH Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  5. Richard A Neher

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    Richard A Neher, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2525-1407
  6. Marloes H Maathuis

    Department of Mathematics, ETH Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  7. Sebastian Bonhoeffer

    Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8052-3925
  8. Tanja Stadler

    Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
    For correspondence
    tanja.stadler@bsse.ethz.ch
    Competing interests
    No competing interests declared.

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31CA30_196267)

  • Tanja Stadler

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (200021_172603)

  • Marloes H Maathuis

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030B_176401)

  • Sebastian Bonhoeffer

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (407240-167121)

  • Sebastian Bonhoeffer
  • Tanja Stadler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Miles P Davenport, University of New South Wales, Australia

Version history

  1. Preprint posted: November 30, 2020 (view preprint)
  2. Received: June 17, 2021
  3. Accepted: July 1, 2022
  4. Accepted Manuscript published: August 8, 2022 (version 1)
  5. Version of Record published: September 12, 2022 (version 2)

Copyright

© 2022, Huisman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,858
    views
  • 329
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jana Sanne Huisman
  2. Jérémie Scire
  3. Daniel C Angst
  4. Jinzhou Li
  5. Richard A Neher
  6. Marloes H Maathuis
  7. Sebastian Bonhoeffer
  8. Tanja Stadler
(2022)
Estimation and worldwide monitoring of the effective reproductive number of SARS-CoV-2
eLife 11:e71345.
https://doi.org/10.7554/eLife.71345

Share this article

https://doi.org/10.7554/eLife.71345

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article Updated

    Background:

    Few national-level studies have evaluated the impact of ‘hybrid’ immunity (vaccination coupled with recovery from infection) from the Omicron variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

    Methods:

    From May 2020 to December 2022, we conducted serial assessments (each of ~4000–9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots (DBSs) to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results:

    Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than 6 months earlier, spike levels fell notably and continuously for the 9-month post-vaccination. In contrast, among adults infected within 6 months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than 6 months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% confidence interval 11–14%) before omicron to 78% (76–80%) by December 2022, equating to 25 million infected adults cumulatively. However, the coronavirus disease 2019 (COVID-19) weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions:

    Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected DBSs are a practicable biological surveillance platform.

    Funding:

    Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael’s Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.

    1. Epidemiology and Global Health
    Sean V Connelly, Nicholas F Brazeau ... Jeffrey A Bailey
    Research Article

    Background:

    The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission.

    Methods:

    To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018.

    Results:

    Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes.

    Conclusions:

    Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors.

    Funding:

    This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.