Efferocytosis of SARS-CoV-2-infected dying cells impairs macrophage anti-inflammatory functions and clearance of apoptotic cells
Abstract
COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppress macrophage anti-inflammation and efficient tissue repair programs and provide mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.
Data availability
Source data files containing the numerical values for graphs depicting flow cytometry, ELISA, CBA, RT-qPCR, and imaging quantification data are be uploaded as csv files. All code used for analysis is documented in the Methods section.
-
Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19NCBI Gene Expression Omnibus, GSE145926.
-
COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas.NCBI Gene Expression Omnibus, GSE158055.
Article and author information
Author details
Funding
Fundação de Amparo à Pesquisa do Estado de São Paulo (2018/25559-4)
- Larissa D Cunha
Fundação de Amparo à Pesquisa do Estado de São Paulo (2020/05288-6)
- Larissa D Cunha
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (88887.507253/2020-00)
- Dario S Zamboni
Conselho Nacional de Desenvolvimento Científico e Tecnológico (434538/2018-3)
- Larissa D Cunha
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The procedures followed in the study were approved by the Research Ethics Committee of Hospital das Clínicas de Ribeirão Preto (CEP-FMRP/USP) and by the National Ethics Committee, Brazil (Comissão Nacional de Ética em Pesquisa (CONEP), protocols 30248420.9.0000.5440 and 39722020.9.0000.5440. Written informed consent was obtained from recruited donors.Ultrasound-guided minimally invasive autopsies for COVID-19 deceased patients were approved by the Research Ethics Committee of Hospital das Clínicas de Ribeirão Preto (CEP, protocol no. 4.089.567).
Reviewing Editor
- Alex Sigal, Africa Health Research Institute, University of KwaZulu-Natal, South Africa
Publication history
- Preprint posted: February 23, 2021 (view preprint)
- Received: October 4, 2021
- Accepted: May 25, 2022
- Accepted Manuscript published: June 6, 2022 (version 1)
- Version of Record published: July 7, 2022 (version 2)
Copyright
© 2022, Salina et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,298
- Page views
-
- 723
- Downloads
-
- 11
- Citations
Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
- Medicine
- Microbiology and Infectious Disease
eLife has published the following articles on SARS-CoV-2 and COVID-19.
-
- Immunology and Inflammation
- Microbiology and Infectious Disease
Bacterial pneumonia in neonates can cause significant morbidity and mortality when compared to other childhood age groups. To understand the immune mechanisms that underlie these age-related differences, we employed a mouse model of E. coli pneumonia to determine the dynamic cellular and molecular differences in immune responsiveness between neonates (PND 3-5) and juveniles (PND 12-18), at 24, 48, and 72 hours. Cytokine gene expression from whole lung extracts was also quantified at these time points, using qRT-PCR. E. coli challenge resulted in rapid and significant increases in neutrophils, monocytes, and γδT cells, along with significant decreases in dendritic cells and alveolar macrophages in the lungs of both neonates and juveniles. E. coli challenged juvenile lung had significant increases in interstitial macrophages and recruited monocytes that were not observed in neonatal lungs. Expression of IFNg-responsive genes was positively correlated with the levels and dynamics of MHCII-expressing innate cells in neonatal and juvenile lungs. Several facets of immune responsiveness in the wild-type neonates were recapitulated in juvenile MHCII-/- juveniles. Employing a pre-clinical model of E. coli pneumonia, we identified significant differences in the early cellular and molecular dynamics in the lungs that likely contribute to the elevated susceptibility of neonates to bacterial pneumonia and could represent targets for intervention to improve respiratory outcomes and survivability of neonates.