Effect of cancer on outcome of COVID-19 patients: a systematic review and meta-analysis of studies of unvaccinated patients

  1. Giulia Di Felice
  2. Giovanni Visci  Is a corresponding author
  3. Federica Teglia
  4. Marco Angelini
  5. Paolo Boffetta  Is a corresponding author
  1. Department of Medical and Surgical Sciences, University of Bologna, Italy
  2. IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
  3. Stony Brook Cancer Center, Stony Brook University, United States

Abstract

Background:

Since the beginning of the SARS-CoV-2 pandemic, cancer patients affected by COVID-19 have been reported to experience poor prognosis; however, a detailed quantification of the effect of cancer on outcome of unvaccinated COVID-19 patients has not been performed.

Methods:

To carry out a systematic review of the studies comparing the outcome of unvaccinated COVID-19 patients with and without cancer, a search string was devised which was used to identify relevant publications in PubMed up to December 31, 2020. We selected three outcomes: mortality, access to ICU, and COVID-19 severity or hospitalization. We considered results for all cancers combined as well as for specific cancers. We conducted random-effects meta-analyses of the results, overall and after stratification by region. We also performed sensitivity analyses according to quality score and assessed publication bias.

Results:

For all cancer combined, the pooled odds ratio (OR) for mortality was 2.32 (95% confidence interval [CI] 1.82–2.94, I2 for heterogeneity 90.1%, 24 studies), that for ICU admission was 2.39 (95% CI 1.90–3.02, I2 0.0%, 5 studies), that for disease severity or hospitalization was 2.08 (95% CI 1.60–2.72, I2 92.1%, 15 studies). The pooled mortality OR for hematologic neoplasms was 2.14 (95% CI 1.87–2.44, I2 20.8%, 8 studies). Data were insufficient to perform a meta-analysis for other cancers. In the mortality meta-analysis for all cancers, the pooled OR was higher for studies conducted in Asia than studies conducted in Europe or North America. There was no evidence of publication bias.

Conclusions:

Our meta-analysis indicates a twofold increased risk of adverse outcomes (mortality, ICU admission, and severity of COVID-19) in unvaccinated COVID-19 patients with cancer compared to COVID-19 patients without cancer. These results should be compared with studies conducted in vaccinated patients; nonetheless, they argue for special effort to prevent SARS-CoV-2 infection in patients with cancer.

Funding:

No external funding was obtained.

Editor's evaluation

The authors conducted a systematic review and baseline meta-analysis of studies on the impact of SARS-Cov-2 infection on morbidity and mortality among cancer patients not previously vaccinated against the virus. This analysis serves as benchmark for forthcoming work on the same outcomes among vaccinated cancer patients, which as a whole will assist the development of cancer care guidelines.

https://doi.org/10.7554/eLife.74634.sa0

Introduction

Since the emergence of SARS-CoV-2, many studies have been conducted on the outcomes of COVID-19, in order to identify factors associated with a higher death rate and a more severe infection course. Some groups of patients at increased risk of severe COVID-19, morbidity, and mortality have been identified, including elderly patients, and those with comorbidities, such as hypertension, diabetes, chronic kidney disease, or COPD (Fang et al., 2020). Cancer patients are also a high-risk group due to their compromised immune systems and vulnerability to infection resulting from their disease and the treatments (Kamboj and Sepkowitz, 2009).

It is generally assumed that cancer patients are at higher risk for severe COVID-19 and death attributed to COVID-19 (Rüthrich et al., 2021). However, cancer encompasses a very heterogeneous group of diseases with a diverse range of subtypes and stages. In addition, not all cancers are equal in terms of incidence, prognosis, and treatment. This must be taken into account when the type of cancer is not specified (Lee et al., 2020). For this reason, although descriptions and analyses of risk factors, clinical courses, and mortality in cancer patients infected with SARS-CoV-2 have been reported, a quantitative assessment of the effect of cancer in patients with COVID-19 would be important to guide clinical decision-making.

We aimed at conducting a systematic review of the epidemiological features of the studies of COVID-19 in cancer patients conducted before the implementation of vaccination campaigns, and to provide a quantitative estimate of the risk of severe infection course and mortality in COVID-19 patients with cancer compared to COVID-19 patients without cancer. We decided to restrict our review to studies of unvaccinated patients because (i) they provide the clearest picture of the effect of cancer on outcome of COVID-19 patients, and (ii) the full effect of vaccination might not have been yet captured by available studies.

Materials and methods

This systematic review was conducted according to the PRISMA statement (Moher et al., 2009). We submitted the protocol (available as Supplementary file 1) to the PROSPERO Registry. To carry out the systematic review of the scientific literature, the following string was used for the PubMed database:

(neoplas*[TIAB] OR tumor*[TIAB] OR cancer*[TIAB] OR malignancy [TIAB]) AND (2019 novel coronavirus[TIAB] OR COVID-19[TIAB] OR COVID19[TIAB] OR SARS-CoV-2[TIAB] OR 2019-nCoV[TIAB]).

In order to restrict the review to study populations on unvaccinated COVID-19 patients, we included papers published in peer-reviewed journals up to December 31, 2020. We excluded abstracts and non-peer-reviewed reports, articles in languages other than English, and studies including children. We also excluded reviews, meta-analysis and case reports, and studies with less than 50 patients or less than 10 events. Finally, we excluded studies in which diagnosis of SARS-CoV-2 infection was not made by PCR testing.

The articles were independently reviewed and abstracted by two pairs of reviewers (GDF and MA; GV and FT), on the basis of title, abstract, and full text; the disagreement between the authors of the reviews (6.1% of all studies) and was resolved through discussion with a fifth reviewer [PB].

We selected the following outcomes: mortality, ICU admission, severity of COVID-19 symptoms, and hospitalization: we combined these latter two outcomes because the definition of severity was heterogeneous across studies and the number of available studies was low. We excluded from the review studies addressing the impact of SARS-CoV-2 infection on prevention, diagnosis, and treatment of cancer patients, for example, studies comparing cancer patients with and without SARS-CoV-2 infection, as well as studies on the oncogenic effect of the virus, for example, analyses of cancer-related alterations. In addition, we carried out a back-search by inspecting the lists of references of articles selected for the review.

Figure 1 shows the flowchart for selection of the studies. Details on the studies retained in each step of the process are available from the authors.

Flowchart for the identification of articles for the meta-analyses (PRISMA).

We abstracted the following parameters from the articles retained for the review: country, sample size, number of persons affected by cancer and by SARS-CoV-2 infection, cancer type and comparison group (patients without cancer or patients with a different type of cancer), outcome, and risk estimate (relative risk or odds ratio [OR]) with 95% confidence interval (CI). If the risk estimate or the CI were not reported in the publication, we calculated them from the raw data, if possible. We also performed a quality assessment (QA) based on a modified version of CASP score (Critical Appraisal Skills Programme, 2018), that included 10 criteria (Supplementary file 2).

Statistical analysis

Request a detailed protocol

We conducted random-effects (DerSimonian and Laird, 1986) meta-analyses of the risk estimates for the combinations of cancers and outcomes with more than five independent results. We also conducted stratified meta-analyses according to geographic region, to explore potential sources of heterogeneity, that we quantified using the I2 test (Higgins and Thompson, 2002).

To evaluated results stability, we performed sensitivity analyses by quality score and repeated the meta-analysis after excluding one study at a time. We also conducted secondary analyses excluding studies with results calculated on the basis of raw data. Furthermore, we considered the funnel plot and performed the Egger’s regression asymmetry test to assess publication bias (Egger et al., 1997).

Finally, we conducted a cumulative meta-analysis, based on date of publication of subsequent studies.

Analyses were performed by STATA16 program (StataCorp, 2019), using specific commands metan, metabias, and metafunnel.

Results

We identified a total of 3488 publications from the literature search and excluded 3 because they were duplicates. We screened the titles and abstracts of 3485 articles: we excluded 3145 of them because not relevant (Figure 1), and retained 340 articles as potentially eligible.

After reviewing the full-texts, we excluded 303 articles because these did not meet the inclusion criteria, and included the remaining 37 studies in the review: we finally included 35 of them in the quantitative synthesis.

Among the 35 studies, 30 reported results for all cancers combined, and 8 for hematologic neoplasms (3 of these reported both sets of results). Results for other specific cancers were sparse, and we could not conduct meta-analyses of them. Out of the 35 studies, 13 were from Europe, 11 from North America (all from the United States), and 11 from Asia (9 from China and 2 from Iran). Fifteen studies were considered good quality (CASP score>9.5), 19 studies were of moderate quality (9.5≥CASP score>6), whereas 1 was considered inadequate (CASP score≤6).

Tables 1 and 2 show the details of the studies included in the analysis.

Table 1
Selected characteristics of studies included in the meta-analysis – all cancers.
ReferencesCountryN patientsN outcomesQuality scoreComparisonOutcomeRR/OR*95% CI
Dai et al., 2020China6411059.25InternalMortality2.341.15–4.77
ICU2.841.59–5.08
Severity2.791.75–4.44
Haase et al., 2021Denmark3231511.5InternalMortality3.181.66–6.09
Meng et al., 2020China4361099.5InternalMortality2.981.76–5.05
Sun et al., 2020USA3236710.5InternalMortality5.671.49–21.58
ICU1.910.90–4.06
Hospitalization2.161.12–4.17
Nogueira et al., 2020Portugal20,2936119.25InternalMortality1.481.07–2.05
Zandkarimi et al., 2020Iran1831326.5InternalMortality3.571.82–7.02
Zhao et al., 2020China539236.5InternalMortality3.231.39–7.51
Harrison et al., 2020USA31,46119669.75InternalMortality0.870.72–1.09
Gupta et al., 2020USA22151127.5InternalMortality2.201.50–3.22
Ganatra et al., 2020USA24761959.25InternalMortality3.532.95–4.23
Severity3.753.17–4.44
Hospitalization2.782.37–3.26
Westblade et al., 2020USA22941008.5InternalMortality1.291.04–1.61
Severity0.760.57–1.01
Wang et al., 2020USA16,570120011InternalMortality3.202.89–3.55
Hospitalization2.852.63–3.09
Cherri et al., 2020Italy20395311InternalMortality2.221.25–3.94
Görgülü and Duyan, 2020Turkey4837511InternalMortality1.810.88–3.72
ICU2.141.26–3.63
Jiménez et al., 2020Spain15491039.75InternalMortality4.292.40–7.67
Thompson et al., 2020UK4708710InternalMortality2.201.27–3.81
Li et al., 2020China1859659ExternalMortality1.590.94–2.68
Shoumariyeh et al., 2020Germany78398.5ExternalMortality1.010.41–2.49
Severity1.150.61–2.17
Mehta et al., 2020USA13082188.5ExternalMortality2.381.69–3.35
Rogado et al., 2020Spain42,495458ExternalMortality4.822.67–8.71
Brar et al., 2020USA5851179.5ExternalMortality0.980.58–1.66
Severity0.800.57–1.13
Zhang et al., 2020bChina2171129.5ExternalMortality4.832.87–8.12
ICU2.601.87–3.62
Severity1.431.09–1.87
Sorouri et al., 2020Iran1595310ExternalMortality3.270.93–11.55
ICU1.520.56–4.12
Lunski et al., 2021USA51453129.5ExternalMortality2.031.44–2.87
Atalla et al., 2021USA3392710.5InternalHospitalization3.341.81–6.16
Cheng et al., 2020China1476296InternalSeverity2.140.97–4.73
Song et al., 2021China961217InternalSeverity2.771.16–6.62
Liang et al., 2020China1590188.75InternalSeverity4.071.23–13.45
Bauer et al., 2021USA14491088.5InternalSeverity1.721.11–2.67
Tian et al., 2020China7512329ExternalSeverity3.752.71–5.19
  1. *

    Results derived from data reported in the publication are in italics.

  2. Risk estimates derived from multivariate analysis.

  3. RR: Relative Risk; OR: Odds Ratio; CI: Confidence interval; ICU: Intensive Care Unit.

Table 2
Selected characteristics of studies included in the meta-analysis – hematological tumors.
Author – YearCountrySample size (n)Cancer (n)O number of cancer (%)Quality assessment (CASP)ComparisonOutcomeRR/OR*IC
Dai et al., 2020China64199.25InternalMortality9.072.16–38.13
Haase et al., 2021Denmark3231311.5InternalMortality1.830.85–3.93
Meng et al., 2020China327169.5InternalMortality2.830.96–8.32
Yigenoglu et al., 2021Turkey148074010.5ExternalMortality2.201.93–2.50
Shah et al., 2020UK1183689.75ExternalMortality1.741.12–2.71
Sanchez-Pina et al., 2020Spain923910.25ExternalMortality6.651.87–23.67
Passamonti et al., 2020Italy53611ExternalMortality2.041.77–2.35
Cattaneo et al., 2020Italy2041029ExternalMortality2.101.14–3.85
  1. *

    italics characters when calculated manually.

  2. Risk estimates derived from multivariate analysis.

  3. CASP: Critical Appraisal Skills Programme; RR: Relative Risk; OR: Odds Ratio; IC: Interval Confidence; ICU: Intensive Care Unit.

Figures 24 report the results of the meta-analyses of studies of COVID-19 patients with all cancers combined compared to patients without cancer, for mortality, admission to ICU, and hospitalization or severity of COVID-19, respectively. The pooled OR for mortality was 2.32 (95% CI 1.82–2.94, I2 90.1%), that for ICU admission was 2.39 (95% CI 1.90–3.02, I2 0.0%), and that for hospitalization/severity of disease was 2.08 (95% CI 1.60–2.72, I2 92.1%).

Forest plot – all types of cancer – outcome 1.
Forest plot – all types of cancer – outcome 2.
Forest plot – all types of cancer – outcome 3 or 4.

In the analysis by geographic region (Figure 2), the association between SARS-CoV-2 infection and mortality in cancer patients was stronger, and less heterogeneous, in studies from Asia (OR 2.92; 95% CI 2.13–4.01, I2 37.8%) than in studies from either Europe (OR 2.37; 95% CI 1.65–3.40; I2 67.9%) or North America (OR 1.97; 95% CI 1.31–2.97; I2 95.9%, respectively). Too few studies were available on the other outcomes to justify a meta-analysis stratified by region of origin.

The cumulative meta-analysis, based on date of publication of subsequent studies of mortality (all types of cancer), showed a stronger association in the studies published before July 2020 than in studies published later (results not shown in detail).

As shown in Figure 5, we found no evidence of publication bias in the meta-analysis concerning mortality (p value of Egger’s test 0.67). The number of studies included in the other meta-analyses was too low to yield meaningful results on publication bias.

Funnel plot of Egger’s test to assess publication bias – all types of cancer – outcome 1.

In the sensitivity analysis based on QA, the pooled OR of mortality results of studies with acceptable quality was not different from that of results of good-quality studies: OR 2.25 (95% CI 1.73–2.94) versus OR 2.50 (95% CI 1.47–4.26). When we repeated the analysis after excluding one study at a time, we did not identify a major effect of any single study; in particular, the exclusion of the only study that suggested a negative association between cancer and mortality (Harrison et al., 2020) yielded a pooled OR of 2.41 (95% CI 1.95–2,99, I2 85.5%). The association with mortality was less pronounced in studies whose results were reported by the authors (OR 2.11; 95% CI 1.55–2.87) compared to studies whose results were calculated by us (OR 2.66; 95% CI 1.97–3.60), although the difference was not statistically significant (Figure 6).

Forest plot – all types of cancer – outcome 1 – reported versus calculated OR.

Figure 7 presents the results of the meta-analysis of eight studies on mortality in patients with hematologic neoplasms. The pooled RR was 2.14 (95% CI 1.87–2.44, I2 20.8%). Results for other outcomes (admission to ICU, hospitalization, and severity of symptoms) were too sparse to conduct a meta-analysis.

Figure 7 with 1 supplement see all
Forest plot – hematological neoplasms – outcome 1.

Discussion

Since the beginning of the SARS-CoV-2 pandemic, cancer patients affected by COVID-19 have been identified to be at increased risk of poor prognosis, together with other vulnerable categories of patients as those affected by cardiovascular disease, diabetes, kidney injury, obesity, or stroke (Hu et al., 2020).

However, how much SARS-CoV-2 infection resulted in more severe outcomes in cancer patients compared to patients without cancer and what caused their worse clinical course has not been fully clarified. In a previous editorial, some of us addressed the issue of the different interactions that COVID-19 and cancer may have (Hainaut and Boffetta, 2021). On one hand, it is interesting to study how COVID-19 evolves in patients with cancer, by assessing whether the infection in these patients has a more severe course than in a control group affected by the infection but without cancer. On the other hand, it is important to identify the effects that the pandemic itself has determined in patients with cancer, including reduced access to treatment, delay in diagnosis for postponed screening, increased time between follow-up visits, and change in treatment organization. Acquiring more severe infection could be due to both components.

In this systematic review and meta-analysis, we focused on the effect that cancer had in patients with COVID-19 compared with those without cancer in terms of mortality, ICU access, and severity of COVID-19 (hospitalization or severity of symptoms). We found that patients with cancer and SARS-CoV-2 infection have a twofold higher risk of experiencing these adverse outcomes compared to non-cancer patients. Our results are in agreement with those of the meta-analysis by Venkatesulu et al., 2020, who included a smaller number of studies, mainly from China, and reported an OR of 2.54 (95% CI 1.47–4.42) for mortality in cancer patients with concurrent COVID-19, compared to non-cancer patients. Similar to our results, these authors also reported a stronger association in studies from China than in those from other regions. Our results are also similar to those by Zhang et al., 2020a, who reported a meta-analysis of five studies from China, yielding a meta-OR of 2.63, with limited heterogeneity. Compared to these early reports, we included more studies, which should lead to a more robust and precise risk estimate.

The higher risk of mortality in studies from China compared to those from other countries could be explained by the fact that some of the studies from China were conducted during the very early phase of the infection, when diagnosis and treatment for SARS-CoV-2 might have been delayed, resulting in higher death rate. This interpretation is reinforced by the results of the cumulative meta-analysis that showed a stronger effect detected in the early studies compared to later studies.

Our summary results on the risk of ICU admission and severity of COVID-19 indicated a somehow weaker association than that reported by other authors. An early meta-analysis reported a threefold increase for ICU admission, an almost fourfold increase for a SARS-CoV-2 infection classified as severe, and a fivefold increase in being intubated (ElGohary et al., 2020). The fact that our values are lower might be explained by the inclusion of studies conducted when management of cancer patients with SARS-CoV-2 infection was more effective.

Immunosuppression and impaired T-cell response due to therapies may underlie the worse outcome in hematologic cancer diseases, even if some authors suggested that the attenuated inflammatory response in hematological patients can protect from severe COVID-19 morbidity (Vijenthira et al., 2020). The results of our meta-analysis confirm a higher mortality from COVID in patients with hematological neoplasms compared to non-neoplastic patients, with limited heterogeneity, with a pooled risk estimate similar to that for all cancers combined.

We were not able to derive pooled results for other specific cancers. Results for patients with hematologic and solid neoplasms were compared in some individual studies. In particular, Desai et al., 2021 reported a higher mortality in the former group, but the comparison was not adjusted for age and type of therapy.

Although our study provides the most precise measure to date of the effect of cancer in COVID-19 patients, it suffers from some limitations. Many studies included in our analysis did not provide results adjusted for important determinants such as sex, age, comorbidities, and therapy. As mentioned above, we were not able to analyze specific cancers other than hematologic neoplasms, because results were too sparse.

In conclusion, our meta-analysis confirms, by giving a more precise and accurate estimation, evidence to the hypothesis of an association in COVID-19 patients between cancer (and more specific hematologic neoplasm) and a worst outcome on mortality, ICU admission, and severity of COVID-19.

Future studies will be able to better analyze this association for different subtypes of cancer, and to evaluate whether the effects identified before vaccination are attenuated vaccinated patients.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file. Dataset has been deposited on Dryad (https://doi.org/10.5061/dryad.00000004q).

The following data sets were generated
    1. Visci G
    2. Di Felice G
    3. Teglia F
    4. Angelini M
    5. Boffetta P
    (2021) Dryad Digital Repository
    Data from: Effect of SARS-CoV-2 infection on outcome of cancer patients: A systematic review and meta-analysis of studies of unvaccinated patients.
    https://doi.org/10.5061/dryad.00000004q

References

  1. Book
    1. StataCorp
    (2019)
    Stata Statistical Software: Release 16
    College Station, TX: StataCorp LLC.

Decision letter

  1. Nicolas Schlecht
    Reviewing Editor; Roswell Park Comprehensive Cancer Center, United States
  2. Eduardo Franco
    Senior Editor; McGill University, Canada
  3. Sina Azadnajafabad
    Reviewer; Tehran University of Medical Sciences, Islamic Republic of Iran

In the interests of transparency, eLife publishes the most substantive revision requests and the accompanying author responses.

Decision letter after peer review:

Thank you for submitting your article "Effect of SARS-CoV-2 infection on outcome of cancer patients: A systematic review and meta-analysis of studies of unvaccinated patients" for consideration by eLife. Your article has been reviewed by 3 peer reviewers, one of whom is a member of our board of Reviewing Editors and the evaluation has been overseen by a Senior Editor. The following individual involved in review of your submission has agreed to reveal their identity: Sina Azadnajafabad (Reviewer #1).

The reviewers have discussed their reviews with one another, and the Reviewing Editor has drafted this to help you prepare a revised submission.

Essential revisions:

Thank you for submitting your manuscript to the Special issue of eLife. Based on our editorial evaluation and the comments of our peer reviewers, I regret to inform you that we will not accept your manuscript for publication in the current form. However, we would reconsider your manuscript following revision and modification addressing the reviewer's concerns.

The reviews converge at some points that must be addressed in detail in your revision. The first point has to do with the statistical methods and whether the results can be interpreted correctly. Specifically, on the inclusion of non-cancer controls with uninfected cancer patients in the reference group; the estimation of the pooled odds ratios for mortality, ICU admissions and hospitalization, and severe COVID-19 disease between infected cancer patients versus uninfected cancer patients and non-cancer controls, respectively, should be separate and clearly delineated. Second, additional clarity is needed describing how the study quality assessment tool was adapted to your particular research question and source study designs. Third, restriction of the systematic review to studies published in 2020 limits the novelty and timeliness of this meta-analysis; the reviewers recommend expanding the scope to include more recent studies with comparisons between vaccinated and unvaccinated cancer patients.

When revising your manuscript, please consider all issues mentioned in the reviewers' comments carefully: please outline every change made in response to their comments and provide suitable rebuttals for any comments not addressed. Please note that your revised submission may need to be re-reviewed.

Reviewer #1:

I read the manuscript with interest as the topic was exciting and the investigated idea falls into my interested fields. However, the idea and conducted review and synthesized results are by some means out-of-date and many similar published papers on this topic are available now; however, with some smaller size in review. I recommend expanding the review to a more updated population like the vaccinated ones and also extending the period of search to find more recently published literature, to effectively add to the body of evidence in the vast of cancers.

Reviewer #2:

Di Felici et al., investigated the outcomes of people with cancer who are infected by SARS-CoV-2 or develop COVID-19, carrying out a systematic review of studies published to 30 December 2020. They suggest that people with cancer have a pooled odds ratio of 2.32 for mortality, 2.39 for ICU admission, and 2.08 for disease severity and hospitalisation. In the abstract, this is concluded to mean that there is a "two-fold increased risk of adverse outcomes (mortality, ICU admission and severity of COVID-19) in unvaccinated cancer patients infected with SARS-CoV-2 compared to uninfected patients". Unfortunately, the methods used in this review in its current form have severe methodological shortcomings that render the results uninterpretable.

Key issue 1: pooling fundamentally different comparisons

In the Discussion, the authors state that they analysed "the effect that SARS-CoV-2 infection had in patients with cancer compared with those without cancer in terms of mortality, ICU access, and severity of COVID-19 (hospitalization or severity of symptoms)", in a direct conflict with the comparison described in the Abstract.

Looking at the studies included in the same meta-analysis, the authors evidently combine comparisons of

(A) people with COVID-19 and cancer to people with COVID-19 but with no cancer, and

(B) people with COVID-19 and cancer to people with no COVID-19 but with cancer.

This is incorrect as (A) and (B) are fundamentally different: the key difference in (A) relates to cancer status, while the key difference in (B) relates to COVID-19 status.

As an analogy, this would be similar to pooling comparisons of people

(A1) age<40 and male to age<40 and female, and

(B1) age<40 and male to age>40 and male.

In summary, this means the meta-analyses combine very different types of risk comparisons and the results of the review are not interpretable.

Key issue 2: quality assessment limitations

In the second key limitation, the authors state results of a quality assessment, but do not describe how the quality assessment tool was adapted to this particular research question (e.g. what was deemed "acceptable" recruitment of the cohort, "accurate" approaches to exposure and outcome measurement, "all important confounding factors", "complete enough follow-up" etc). Notably, the tool they used is specific to cohort studies, while some of the included studies have a case-control design (e.g. Shoumariyeh et al.,), so this tool is not applicable and quality issues related to case-control studies would not be assessed correctly.

As thorough risk of bias assessment is a key feature required for systematic reviews, this is an important shortcoming further reducing the quality of this study.

The two key issues described above would need to be addressed for the study to be valid.

Reviewer #3:

This study presents results from a systematic review and meta-analysis of studies published in 2020 showing increased risk of adverse clinical outcomes, including mortality, ICU admissions, severe COVID-19 disease, and hospitalizations, among unvaccinated cancer patients infected with COVID-19. While this represents an important question for populations and regions where vaccination rates remain low and cases with COVID-19 disease are prevalent, the focus on the period prior to the widespread introduction of vaccines reduces the study's relevance. In addition, the lack of clarity on the methods and the conflation of uninfected cancer patients with non-cancer controls makes it difficult to draw clear conclusions.

The question of the impact of COVID-19 infection on clinical outcomes in unvaccinated cancer patients is an important question for populations and regions where vaccination rates remain low and cases with COVID-19 prevalent. The relevance of study would be strengthened, however, by including more recent studies that compared vaccinated to unvaccinated cancer patients. In addition, the comparisons between infected and uninfected cancer patients and non-cancer controls should be clearly delineated.

https://doi.org/10.7554/eLife.74634.sa1

Author response

Essential revisions:

The reviews converge at some points that must be addressed in detail in your revision. The first point has to do with the statistical methods and whether the results can be interpreted correctly. Specifically, on the inclusion of non-cancer controls with uninfected cancer patients in the reference group; the estimation of the pooled odds ratios for mortality, ICU admissions and hospitalization, and severe COVID-19 disease between infected cancer patients versus uninfected cancer patients and non-cancer controls, respectively, should be separate and clearly delineated.

We actually found that there was some confusion about the two comparison groups in our meta-analysis (ie COVID patients with cancer VS COVID patients without cancer); we therefore made the changes in the text and also in the title of our Paper. We uploaded a new version with the changes highlighted and also a clean version.

Second, additional clarity is needed describing how the study quality assessment tool was adapted to your particular research question and source study designs.

We uploaded the re-adapted Quality Assessment for the different study designs (the case-control studies had only one less question at the start); it is detectable as Supplementary file 2.

Third, restriction of the systematic review to studies published in 2020 limits the novelty and timeliness of this meta-analysis; the reviewers recommend expanding the scope to include more recent studies with comparisons between vaccinated and unvaccinated cancer patients.

While we agree with the reviewers, we think that including a systematic review and meta-analysis of studies conducted in vaccinated cancer patients would fundamentally transform our manuscript. The number of studies to review would increase dramatically, with consequences in terms of tables and text, and we would require a few months to complete this task. In fact, we have planned to do this analysis and include it in a second manuscript, and we decided to wait until early spring 2022 to identify papers covering the experience of the first year after vaccination. We think our results restricted to the pre-vaccination experience are valuable per se, as they captures a unique experience in medicine, that hopefully will not be replicated, at least for SARS-CoV-2.

https://doi.org/10.7554/eLife.74634.sa2

Article and author information

Author details

  1. Giulia Di Felice

    1. Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
    2. IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
    Contribution
    Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Supervision, Writing – original draft, Writing – review and editing
    Competing interests
    No competing interests declared
  2. Giovanni Visci

    1. Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
    2. IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
    Contribution
    Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Supervision, Writing – original draft, Writing – review and editing
    For correspondence
    giovanni.visci6@gmail.com
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2246-2321
  3. Federica Teglia

    Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
    Contribution
    Data curation, Methodology, Visualization
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3188-1632
  4. Marco Angelini

    Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
    Contribution
    Data curation, Methodology, Visualization
    Competing interests
    No competing interests declared
  5. Paolo Boffetta

    1. Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
    2. Stony Brook Cancer Center, Stony Brook University, Stony Brook, United States
    Contribution
    Conceptualization, Methodology, Project administration, Supervision, Validation, Writing – review and editing
    For correspondence
    paolo.boffetta@unibo.it
    Competing interests
    No competing interests declared

Funding

No external funding was received for this work.

Ethics

Human subjects: (a) All methods were carried out in accordance with relevant guidelines and regulations. (b) The study was considered exempt and the informed consent was not deemed necessary given the nature of the study.

Senior Editor

  1. Eduardo Franco, McGill University, Canada

Reviewing Editor

  1. Nicolas Schlecht, Roswell Park Comprehensive Cancer Center, United States

Reviewer

  1. Sina Azadnajafabad, Tehran University of Medical Sciences, Islamic Republic of Iran

Publication history

  1. Received: October 12, 2021
  2. Preprint posted: October 23, 2021 (view preprint)
  3. Accepted: February 8, 2022
  4. Accepted Manuscript published: February 16, 2022 (version 1)
  5. Version of Record published: March 25, 2022 (version 2)

Copyright

© 2022, Di Felice et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 582
    Page views
  • 128
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giulia Di Felice
  2. Giovanni Visci
  3. Federica Teglia
  4. Marco Angelini
  5. Paolo Boffetta
(2022)
Effect of cancer on outcome of COVID-19 patients: a systematic review and meta-analysis of studies of unvaccinated patients
eLife 11:e74634.
https://doi.org/10.7554/eLife.74634

Further reading

    1. Cancer Biology
    Ning Yang, Xuebo Lu ... Kangdong Liu
    Research Article Updated

    Human esophageal cancer has a global impact on human health due to its high incidence and mortality. Therefore, there is an urgent need to develop new drugs to treat or prevent the prominent pathological subtype of esophageal cancer, esophageal squamous cell carcinoma (ESCC). Based upon the screening of drugs approved by the Food and Drug Administration, we discovered that Arbidol could effectively inhibit the proliferation of human ESCC in vitro. Next, we conducted a series of cell-based assays and found that Arbidol treatment inhibited the proliferation and colony formation ability of ESCC cells and promoted G1-phase cell cycle arrest. Phosphoproteomics experiments, in vitro kinase assays and pull-down assays were subsequently performed in order to identify the underlying growth inhibitory mechanism. We verified that Arbidol is a potential ataxia telangiectasia and Rad3-related (ATR) inhibitor via binding to ATR kinase to reduce the phosphorylation and activation of minichromosome maintenance protein 2 at Ser108. Finally, we demonstrated Arbidol had the inhibitory effect of ESCC in vivo by a patient-derived xenograft model. All together, Arbidol inhibits the proliferation of ESCC in vitro and in vivo through the DNA replication pathway and is associated with the cell cycle.

    1. Cancer Biology
    2. Computational and Systems Biology
    Pan Cheng, Xin Zhao ... Teresa Davoli
    Research Article

    How cells control gene expression is a fundamental question. The relative contribution of protein-level and RNA-level regulation to this process remains unclear. Here, we perform a proteogenomic analysis of tumors and untransformed cells containing somatic copy number alterations (SCNAs). By revealing how cells regulate RNA and protein abundances of genes with SCNAs, we provide insights into the rules of gene regulation. Protein complex genes have a strong protein-level regulation while non-complex genes have a strong RNA-level regulation. Notable exceptions are plasma membrane protein complex genes, which show a weak protein-level regulation and a stronger RNA-level regulation. Strikingly, we find a strong negative association between the degree of RNA-level and protein-level regulation across genes and cellular pathways. Moreover, genes participating in the same pathway show a similar degree of RNA- and protein-level regulation. Pathways including translation, splicing, RNA processing, and mitochondrial function show a stronger protein-level regulation while cell adhesion and migration pathways show a stronger RNA-level regulation. These results suggest that the evolution of gene regulation is shaped by functional constraints and that many cellular pathways tend to evolve one predominant mechanism of gene regulation at the protein level or at the RNA level.