Abstract

Mechanobiology requires precise quantitative information on processes taking place in specific 3D microenvironments. Connecting the abundance of microscopical, molecular, biochemical and cell mechanical data with defined topologies has turned out to be extremely difficult. Establishing such structural and functional 3D maps needed for biophysical modeling is a particular challenge for the cytoskeleton, which consists of long and interwoven filamentous polymers coordinating subcellular processes and interactions of cells with their environment. To date, useful tools are available for the segmentation and modeling of actin filaments and microtubules but comprehensive tools for the mapping of intermediate filament organization are still lacking. In this work, we describe a workflow to model and examine the complete 3D arrangement of the keratin intermediate filament cytoskeleton in canine, murine and human epithelial cells both, in vitro and in vivo. Numerical models are derived from confocal Airyscan high resolution 3D imaging of fluorescence-tagged keratin filaments. They are interrogated and annotated at different length scales using different modes of visualization including immersive virtual reality. In this way, information is provided on network organization at the subcellular level including mesh arrangement, density and isotropic configuration as well as details on filament morphology such as bundling, curvature and orientation. We show that the comparison of these parameters helps to identify, in quantitative terms, similarities and differences of keratin network organization in epithelial cell types defining subcellular domains, notably basal, apical, lateral and perinuclear systems. The described approach and the presented data are pivotal for generating mechanobiological models that can be experimentally tested.

Data availability

Software, original and processed data are available athttp://kernet.rwth-aachen.de/andhttps://github.com/VRGroupRWTH/Zytoskelett

The following data sets were generated

Article and author information

Author details

  1. Reinhard Windoffer

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    For correspondence
    rwindoffer@ukaachen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1403-5880
  2. Nicole Schwarz

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sungjun Yoon

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Teodora Piskova

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Scholkemper

    Department of Computer Science, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Johannes Stegmaier

    Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4072-3759
  7. Andrea Bönsch

    Visual Computing Institute, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5077-3675
  8. Jacopo Di Russo

    Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6731-9612
  9. Rudolf Leube

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    For correspondence
    rleube@ukaachen.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (WI173/8-2)

  • Reinhard Windoffer

Deutsche Forschungsgemeinschaft (LE566/18-2)

  • Rudolf Leube

Deutsche Forschungsgemeinschaft (GRK2415/363055819)

  • Reinhard Windoffer
  • Nicole Schwarz
  • Sungjun Yoon
  • Teodora Piskova
  • Rudolf Leube

RWTH Aachen University (rwth0452)

  • Reinhard Windoffer

Medizinische Fakultät, RWTH Aachen University (IZKF)

  • Teodora Piskova
  • Jacopo Di Russo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted in accordance with the guidelines for the care and use of laboratory animals and were approved by the Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV; reference number 84-02.04.2015.A190 and approvals according to {section sign}4 of the German Animal Welfare Act).

Copyright

© 2022, Windoffer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,983
    views
  • 305
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Reinhard Windoffer
  2. Nicole Schwarz
  3. Sungjun Yoon
  4. Teodora Piskova
  5. Michael Scholkemper
  6. Johannes Stegmaier
  7. Andrea Bönsch
  8. Jacopo Di Russo
  9. Rudolf Leube
(2022)
Quantitative mapping of keratin networks in 3D
eLife 11:e75894.
https://doi.org/10.7554/eLife.75894

Share this article

https://doi.org/10.7554/eLife.75894

Further reading

    1. Cell Biology
    Erli Jin, Jennifer K Briggs ... Matthew J Merrins
    Research Article

    Oscillations in insulin secretion, driven by islet Ca2+ waves, are crucial for glycemic control. Prior studies, performed with single-plane imaging, suggest that subpopulations of electrically coupled β-cells have privileged roles in leading and coordinating the propagation of Ca2+ waves. Here, we used three-dimensional (3D) light-sheet imaging to analyze the location and Ca2+ activity of single β-cells within the entire islet at >2 Hz. In contrast with single-plane studies, 3D network analysis indicates that the most highly synchronized β-cells are located at the islet center, and remain regionally but not cellularly stable between oscillations. This subpopulation, which includes ‘hub cells’, is insensitive to changes in fuel metabolism induced by glucokinase and pyruvate kinase activation. β-Cells that initiate the Ca2+ wave (leaders) are located at the islet periphery, and strikingly, change their identity over time via rotations in the wave axis. Glucokinase activation, which increased oscillation period, reinforced leader cells and stabilized the wave axis. Pyruvate kinase activation, despite increasing oscillation frequency, had no effect on leader cells, indicating the wave origin is patterned by fuel input. These findings emphasize the stochastic nature of the β-cell subpopulations that control Ca2+ oscillations and identify a role for glucokinase in spatially patterning ‘leader’ β-cells.

    1. Cell Biology
    Giuliana Giamundo, Daniela Intartaglia ... Ivan Conte
    Research Article

    Endosomes have emerged as major signaling hubs where different internalized ligand–receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane–actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.