Abstract

Mechanobiology requires precise quantitative information on processes taking place in specific 3D microenvironments. Connecting the abundance of microscopical, molecular, biochemical and cell mechanical data with defined topologies has turned out to be extremely difficult. Establishing such structural and functional 3D maps needed for biophysical modeling is a particular challenge for the cytoskeleton, which consists of long and interwoven filamentous polymers coordinating subcellular processes and interactions of cells with their environment. To date, useful tools are available for the segmentation and modeling of actin filaments and microtubules but comprehensive tools for the mapping of intermediate filament organization are still lacking. In this work, we describe a workflow to model and examine the complete 3D arrangement of the keratin intermediate filament cytoskeleton in canine, murine and human epithelial cells both, in vitro and in vivo. Numerical models are derived from confocal Airyscan high resolution 3D imaging of fluorescence-tagged keratin filaments. They are interrogated and annotated at different length scales using different modes of visualization including immersive virtual reality. In this way, information is provided on network organization at the subcellular level including mesh arrangement, density and isotropic configuration as well as details on filament morphology such as bundling, curvature and orientation. We show that the comparison of these parameters helps to identify, in quantitative terms, similarities and differences of keratin network organization in epithelial cell types defining subcellular domains, notably basal, apical, lateral and perinuclear systems. The described approach and the presented data are pivotal for generating mechanobiological models that can be experimentally tested.

Data availability

Software, original and processed data are available athttp://kernet.rwth-aachen.de/andhttps://github.com/VRGroupRWTH/Zytoskelett

The following data sets were generated

Article and author information

Author details

  1. Reinhard Windoffer

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    For correspondence
    rwindoffer@ukaachen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1403-5880
  2. Nicole Schwarz

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sungjun Yoon

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Teodora Piskova

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Scholkemper

    Department of Computer Science, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Johannes Stegmaier

    Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4072-3759
  7. Andrea Bönsch

    Visual Computing Institute, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5077-3675
  8. Jacopo Di Russo

    Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6731-9612
  9. Rudolf Leube

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    For correspondence
    rleube@ukaachen.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (WI173/8-2)

  • Reinhard Windoffer

Deutsche Forschungsgemeinschaft (LE566/18-2)

  • Rudolf Leube

Deutsche Forschungsgemeinschaft (GRK2415/363055819)

  • Reinhard Windoffer
  • Nicole Schwarz
  • Sungjun Yoon
  • Teodora Piskova
  • Rudolf Leube

RWTH Aachen University (rwth0452)

  • Reinhard Windoffer

Medizinische Fakultät, RWTH Aachen University (IZKF)

  • Teodora Piskova
  • Jacopo Di Russo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pierre Coulombe

Ethics

Animal experimentation: All animal experiments were conducted in accordance with the guidelines for the care and use of laboratory animals and were approved by the Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV; reference number 84-02.04.2015.A190 and approvals according to {section sign}4 of the German Animal Welfare Act).

Version history

  1. Received: November 26, 2021
  2. Preprint posted: December 9, 2021 (view preprint)
  3. Accepted: February 15, 2022
  4. Accepted Manuscript published: February 18, 2022 (version 1)
  5. Accepted Manuscript updated: February 23, 2022 (version 2)
  6. Version of Record published: April 4, 2022 (version 3)

Copyright

© 2022, Windoffer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,552
    Page views
  • 270
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Reinhard Windoffer
  2. Nicole Schwarz
  3. Sungjun Yoon
  4. Teodora Piskova
  5. Michael Scholkemper
  6. Johannes Stegmaier
  7. Andrea Bönsch
  8. Jacopo Di Russo
  9. Rudolf Leube
(2022)
Quantitative mapping of keratin networks in 3D
eLife 11:e75894.
https://doi.org/10.7554/eLife.75894

Share this article

https://doi.org/10.7554/eLife.75894

Further reading

    1. Cell Biology
    Fabian Link, Alyssa Borges ... Markus Engstler
    Research Article

    Endocytosis is a common process observed in most eukaryotic cells, although its complexity varies among different organisms. In Trypanosoma brucei, the endocytic machinery is under special selective pressure because rapid membrane recycling is essential for immune evasion. This unicellular parasite effectively removes host antibodies from its cell surface through hydrodynamic drag and fast endocytic internalization. The entire process of membrane recycling occurs exclusively through the flagellar pocket, an extracellular organelle situated at the posterior pole of the spindle-shaped cell. The high-speed dynamics of membrane flux in trypanosomes do not seem compatible with the conventional concept of distinct compartments for early endosomes (EE), late endosomes (LE), and recycling endosomes (RE). To investigate the underlying structural basis for the remarkably fast membrane traffic in trypanosomes, we employed advanced techniques in light and electron microscopy to examine the three-dimensional architecture of the endosomal system. Our findings reveal that the endosomal system in trypanosomes exhibits a remarkably intricate structure. Instead of being compartmentalized, it constitutes a continuous membrane system, with specific functions of the endosome segregated into membrane subdomains enriched with classical markers for EE, LE, and RE. These membrane subdomains can partly overlap or are interspersed with areas that are negative for endosomal markers. This continuous endosome allows fast membrane flux by facilitated diffusion that is not slowed by multiple fission and fusion events.

    1. Cell Biology
    2. Neuroscience
    Haibin Yu, Dandan Liu ... Kai Yuan
    Research Article

    O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.