Abstract

Mechanobiology requires precise quantitative information on processes taking place in specific 3D microenvironments. Connecting the abundance of microscopical, molecular, biochemical and cell mechanical data with defined topologies has turned out to be extremely difficult. Establishing such structural and functional 3D maps needed for biophysical modeling is a particular challenge for the cytoskeleton, which consists of long and interwoven filamentous polymers coordinating subcellular processes and interactions of cells with their environment. To date, useful tools are available for the segmentation and modeling of actin filaments and microtubules but comprehensive tools for the mapping of intermediate filament organization are still lacking. In this work, we describe a workflow to model and examine the complete 3D arrangement of the keratin intermediate filament cytoskeleton in canine, murine and human epithelial cells both, in vitro and in vivo. Numerical models are derived from confocal Airyscan high resolution 3D imaging of fluorescence-tagged keratin filaments. They are interrogated and annotated at different length scales using different modes of visualization including immersive virtual reality. In this way, information is provided on network organization at the subcellular level including mesh arrangement, density and isotropic configuration as well as details on filament morphology such as bundling, curvature and orientation. We show that the comparison of these parameters helps to identify, in quantitative terms, similarities and differences of keratin network organization in epithelial cell types defining subcellular domains, notably basal, apical, lateral and perinuclear systems. The described approach and the presented data are pivotal for generating mechanobiological models that can be experimentally tested.

Data availability

Software, original and processed data are available athttp://kernet.rwth-aachen.de/andhttps://github.com/VRGroupRWTH/Zytoskelett

The following data sets were generated

Article and author information

Author details

  1. Reinhard Windoffer

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    For correspondence
    rwindoffer@ukaachen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1403-5880
  2. Nicole Schwarz

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sungjun Yoon

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Teodora Piskova

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Scholkemper

    Department of Computer Science, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Johannes Stegmaier

    Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4072-3759
  7. Andrea Bönsch

    Visual Computing Institute, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5077-3675
  8. Jacopo Di Russo

    Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6731-9612
  9. Rudolf Leube

    Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
    For correspondence
    rleube@ukaachen.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (WI173/8-2)

  • Reinhard Windoffer

Deutsche Forschungsgemeinschaft (LE566/18-2)

  • Rudolf Leube

Deutsche Forschungsgemeinschaft (GRK2415/363055819)

  • Reinhard Windoffer
  • Nicole Schwarz
  • Sungjun Yoon
  • Teodora Piskova
  • Rudolf Leube

RWTH Aachen University (rwth0452)

  • Reinhard Windoffer

Medizinische Fakultät, RWTH Aachen University (IZKF)

  • Teodora Piskova
  • Jacopo Di Russo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pierre Coulombe

Ethics

Animal experimentation: All animal experiments were conducted in accordance with the guidelines for the care and use of laboratory animals and were approved by the Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV; reference number 84-02.04.2015.A190 and approvals according to {section sign}4 of the German Animal Welfare Act).

Version history

  1. Received: November 26, 2021
  2. Preprint posted: December 9, 2021 (view preprint)
  3. Accepted: February 15, 2022
  4. Accepted Manuscript published: February 18, 2022 (version 1)
  5. Accepted Manuscript updated: February 23, 2022 (version 2)
  6. Version of Record published: April 4, 2022 (version 3)

Copyright

© 2022, Windoffer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,720
    views
  • 284
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Reinhard Windoffer
  2. Nicole Schwarz
  3. Sungjun Yoon
  4. Teodora Piskova
  5. Michael Scholkemper
  6. Johannes Stegmaier
  7. Andrea Bönsch
  8. Jacopo Di Russo
  9. Rudolf Leube
(2022)
Quantitative mapping of keratin networks in 3D
eLife 11:e75894.
https://doi.org/10.7554/eLife.75894

Share this article

https://doi.org/10.7554/eLife.75894

Further reading

    1. Cell Biology
    Yuki Date, Yukiko Sasazawa ... Shinji Saiki
    Research Article Updated

    The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including α-synuclein (αSyn) associated with the pathogenesis of Parkinson’s disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble αSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article Updated

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signalling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor 1. Overall, we implicate CYRI-B as a mediator of growth and signalling in pancreatic cancer, providing new insights into pathways controlling metastasis.