Parasite defensive limb movements enhance acoustic signal attraction in male little torrent frogs
Abstract
Many animals rely on complex signals that target multiple senses to attract mates and repel rivals. These multimodal displays can however also attract unintended receivers, which can be an important driver of signal complexity. Despite being taxonomically widespread, we often lack insight into how multimodal signals evolve from unimodal signals and in particular what roles unintended eavesdroppers play. Here we assess whether the physical movements of parasite defense behavior increase the complexity and attractiveness of an acoustic sexual signal in the little torrent frog (Amolops torrentis). Calling males of this species often display limb movements in order to defend against blood-sucking parasites such as frog-biting midges that eavesdrop on their acoustic signal. Through mate choice tests we show that some of these midge-evoked movements influence female preference for acoustic signals. Our data suggest that midge-induced movements may be incorporated into a sexual display, targeting both hearing and vision in the intended receiver. Females may play an important role in incorporating these multiple components because they prefer signals which combine multiple modalities. Our results thus help to understand the relationship between natural and sexual selection pressure operating on signalers and how in turn this may influence multimodal signal evolution.
Data availability
Data used to generate the results are available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.f1vhhmgzg.
-
The data of parasite-induced and spontaneous displays in each limb movement for calling males, silent males and males that have females nearbyDryad Digital Repository, doi:10.5061/dryad.f1vhhmgzg.
Article and author information
Author details
Funding
Sichuan Science and Technology Program (2022JDTD0026)
- Jianguo Cui
National Natural Science Foundation of China (31772464)
- Jianguo Cui
Youth Innovation Promotion Association (2012274)
- Jianguo Cui
CAS Light of West China" Program" (None)
- Jianguo Cui
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All procedures were approved by the management office of the Wuzhishan Nature Reserve and the Animal Care and Use Committee of the Chengdu Institute of Biology, CAS (CIB2017050004 & CIB2019060012).
Reviewing Editor
- Ammie K Kalan, University of Victoria, Canada
Publication history
- Received: December 3, 2021
- Accepted: May 3, 2022
- Accepted Manuscript published: May 6, 2022 (version 1)
Copyright
© 2022, Zhao et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 167
- Page views
-
- 38
- Downloads
-
- 0
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Further reading
-
- Ecology
Climate warming is releasing carbon from soils around the world1-3, constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems4-9. Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown10. Here we used two whole-community transplant experiments and a follow-up glasshouse experiment to determine whether the establishment of herbaceous lowland plants in alpine ecosystems influences soil carbon content under warming. We found that warming (transplantation to low elevation) led to a negligible decrease in alpine soil carbon content, but its effects became significant and 52% ± 31% (mean ± 95% CIs) larger after lowland plants were introduced at low density into the ecosystem. We present evidence that decreases in soil carbon content likely occurred via lowland plants increasing rates of root exudation, soil microbial respiration and CO2 release under warming. Our findings suggest that warming-induced range expansions of herbaceous plants have the potential to alter climate feedbacks from this system, and that plant range expansions among herbaceous communities may be an overlooked mediator of warming effects on carbon dynamics.
-
- Ecology
- Evolutionary Biology
Worldwide, hoverflies (Syrphidae: Diptera) provide crucial ecosystem services such as pollination and biological pest control. Although many hoverfly species exhibit migratory behavior, the spatiotemporal facets of these movement dynamics, and their ecosystem services implications are poorly understood. In this study, we use long-term (16-year) trapping records, trajectory analysis, and intrinsic (i.e., isotope, genetic, pollen) markers to describe migration patterns of the hoverfly Episyrphus balteatus in northern China. Our work reveals how E. balteatus migrate northward during spring–summer and exhibits return (long-range) migration during autumn. The extensive genetic mixing and high genetic diversity of E. balteatus populations underscore its adaptive capacity to environmental disturbances, for example, climate change. Pollen markers and molecular gut analysis further illuminate how E. balteatus visits min. 1012 flowering plant species (39 orders) over space and time. By thus delineating E. balteatus transregional movements and pollination networks, we advance our understanding of its migration ecology and facilitate the design of targeted strategies to conserve and enhance its ecosystem services.