Neocortical pyramidal neurons with axons emerging from dendrites are frequent in non-primates, but rare in monkey and human

  1. Petra Wahle  Is a corresponding author
  2. Eric Sobierajski
  3. Ina Gasterstädt
  4. Nadja Lehmann
  5. Susanna Weber
  6. Joachim HR Lübke
  7. Maren Engelhardt
  8. Claudia Distler
  9. Gundela Meyer
  1. Ruhr University Bochum, Germany
  2. Heidelberg University, Germany
  3. Research Centre Jülich GmbH, Germany
  4. Johannes Kepler University, Austria
  5. University of La Laguna, Spain

Abstract

The canonical view of neuronal function is that inputs are received by dendrites and somata, become integrated in the somatodendritic compartment and upon reaching a sufficient threshold, generate axonal output with axons emerging from the cell body. The latter is not necessarily the case. Instead, axons may originate from dendrites. The terms 'axon carrying dendrite' (AcD) and 'AcD neurons' have been coined to describe this feature. In rodent hippocampus, AcD cells are shown to be functionally 'privileged', since inputs here can circumvent somatic integration and lead to immediate action potential initiation in the axon. Here, we report on the diversity of axon origins in neocortical pyramidal cells of rodent, ungulate, carnivore, and primate. Detection methods were Thy-1-EGFP labeling in mouse, retrograde biocytin tracing in rat, cat, ferret, and macaque, SMI-32/βIV-spectrin immunofluorescence in pig, cat, and macaque, and Golgi staining in macaque and human. We found that in non-primate mammals, 10-21% of pyramidal cells of layers II-VI had an AcD. In marked contrast, in macaque and human, this proportion was lower, and was particularly low for supragranular neurons. A comparison of six cortical areas (sensory, association, limbic) in three macaques yielded percentages of AcD cells which varied by a factor of 2 between the areas and between the individuals. Unexpectedly, pyramidal cells in the white matter of postnatal cat and aged human cortex exhibit AcDs to much higher percentages. In addition, interneurons assessed in developing cat and adult human cortex had AcDs at type-specific proportions and for some types at much higher percentages than pyramidal cells. Our findings expand the current knowledge regarding the distribution and proportion of AcD cells in neocortex of non-primate taxa, which strikingly differ from primates where these cells are mainly found in deeper layers and white matter.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 3 , 4, 5, 6, 7

Article and author information

Author details

  1. Petra Wahle

    Developmental Neurobiology, Ruhr University Bochum, Bochum, Germany
    For correspondence
    petra.wahle@rub.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8710-0375
  2. Eric Sobierajski

    Developmental Neurobiology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ina Gasterstädt

    Developmental Neurobiology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Nadja Lehmann

    Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4801-3057
  5. Susanna Weber

    Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Joachim HR Lübke

    Research Centre Jülich GmbH, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4086-3199
  7. Maren Engelhardt

    Faculty of Medicine, Johannes Kepler University, Linz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Claudia Distler

    Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Gundela Meyer

    Department of Basic Medical Science, University of La Laguna, Santa Cruz de Tenerife, Spain
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (WA 541/13-1)

  • Petra Wahle

Deutsche Forschungsgemeinschaft (WA 541/15-1)

  • Petra Wahle

Deutsche Forschungsgemeinschaft (EN 1240/2-1)

  • Maren Engelhardt

Deutsche Forschungsgemeinschaft (Ho-450/25-1)

  • Claudia Distler

Deutsche Forschungsgemeinschaft (SFB 509/A11)

  • Claudia Distler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The data presented in this paper were collected via tissue sharing and from material that had originally been processed for projects not related to the present topic, i.e. no animals were sacrificed specifically for the present study. Human material was provided by Prof. Meyer and Prof. Lübke from previously published studies.

Copyright

© 2022, Wahle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,669
    views
  • 811
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Petra Wahle
  2. Eric Sobierajski
  3. Ina Gasterstädt
  4. Nadja Lehmann
  5. Susanna Weber
  6. Joachim HR Lübke
  7. Maren Engelhardt
  8. Claudia Distler
  9. Gundela Meyer
(2022)
Neocortical pyramidal neurons with axons emerging from dendrites are frequent in non-primates, but rare in monkey and human
eLife 11:e76101.
https://doi.org/10.7554/eLife.76101

Share this article

https://doi.org/10.7554/eLife.76101

Further reading

    1. Ecology
    2. Evolutionary Biology
    Justine Boutry, Océane Rieu ... Fréderic Thomas
    Research Article

    While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.