Neocortical pyramidal neurons with axons emerging from dendrites are frequent in non-primates, but rare in monkey and human

  1. Petra Wahle  Is a corresponding author
  2. Eric Sobierajski
  3. Ina Gasterstädt
  4. Nadja Lehmann
  5. Susanna Weber
  6. Joachim HR Lübke
  7. Maren Engelhardt
  8. Claudia Distler
  9. Gundela Meyer
  1. Ruhr University Bochum, Germany
  2. Heidelberg University, Germany
  3. Research Centre Jülich GmbH, Germany
  4. Johannes Kepler University, Austria
  5. University of La Laguna, Spain

Abstract

The canonical view of neuronal function is that inputs are received by dendrites and somata, become integrated in the somatodendritic compartment and upon reaching a sufficient threshold, generate axonal output with axons emerging from the cell body. The latter is not necessarily the case. Instead, axons may originate from dendrites. The terms 'axon carrying dendrite' (AcD) and 'AcD neurons' have been coined to describe this feature. In rodent hippocampus, AcD cells are shown to be functionally 'privileged', since inputs here can circumvent somatic integration and lead to immediate action potential initiation in the axon. Here, we report on the diversity of axon origins in neocortical pyramidal cells of rodent, ungulate, carnivore, and primate. Detection methods were Thy-1-EGFP labeling in mouse, retrograde biocytin tracing in rat, cat, ferret, and macaque, SMI-32/βIV-spectrin immunofluorescence in pig, cat, and macaque, and Golgi staining in macaque and human. We found that in non-primate mammals, 10-21% of pyramidal cells of layers II-VI had an AcD. In marked contrast, in macaque and human, this proportion was lower, and was particularly low for supragranular neurons. A comparison of six cortical areas (sensory, association, limbic) in three macaques yielded percentages of AcD cells which varied by a factor of 2 between the areas and between the individuals. Unexpectedly, pyramidal cells in the white matter of postnatal cat and aged human cortex exhibit AcDs to much higher percentages. In addition, interneurons assessed in developing cat and adult human cortex had AcDs at type-specific proportions and for some types at much higher percentages than pyramidal cells. Our findings expand the current knowledge regarding the distribution and proportion of AcD cells in neocortex of non-primate taxa, which strikingly differ from primates where these cells are mainly found in deeper layers and white matter.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 3 , 4, 5, 6, 7

Article and author information

Author details

  1. Petra Wahle

    Developmental Neurobiology, Ruhr University Bochum, Bochum, Germany
    For correspondence
    petra.wahle@rub.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8710-0375
  2. Eric Sobierajski

    Developmental Neurobiology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ina Gasterstädt

    Developmental Neurobiology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Nadja Lehmann

    Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4801-3057
  5. Susanna Weber

    Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Joachim HR Lübke

    Research Centre Jülich GmbH, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4086-3199
  7. Maren Engelhardt

    Faculty of Medicine, Johannes Kepler University, Linz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Claudia Distler

    Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Gundela Meyer

    Department of Basic Medical Science, University of La Laguna, Santa Cruz de Tenerife, Spain
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (WA 541/13-1)

  • Petra Wahle

Deutsche Forschungsgemeinschaft (WA 541/15-1)

  • Petra Wahle

Deutsche Forschungsgemeinschaft (EN 1240/2-1)

  • Maren Engelhardt

Deutsche Forschungsgemeinschaft (Ho-450/25-1)

  • Claudia Distler

Deutsche Forschungsgemeinschaft (SFB 509/A11)

  • Claudia Distler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The data presented in this paper were collected via tissue sharing and from material that had originally been processed for projects not related to the present topic, i.e. no animals were sacrificed specifically for the present study. Human material was provided by Prof. Meyer and Prof. Lübke from previously published studies.

Copyright

© 2022, Wahle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,627
    views
  • 809
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Petra Wahle
  2. Eric Sobierajski
  3. Ina Gasterstädt
  4. Nadja Lehmann
  5. Susanna Weber
  6. Joachim HR Lübke
  7. Maren Engelhardt
  8. Claudia Distler
  9. Gundela Meyer
(2022)
Neocortical pyramidal neurons with axons emerging from dendrites are frequent in non-primates, but rare in monkey and human
eLife 11:e76101.
https://doi.org/10.7554/eLife.76101

Share this article

https://doi.org/10.7554/eLife.76101

Further reading

    1. Evolutionary Biology
    Mattias Siljestam, Claus Rueffler
    Research Article Updated

    The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than 10 alleles. We here present an eco-evolutionary model showing that evolution can result in the emergence and maintenance of more than 100 alleles under HA if the following two assumptions are fulfilled: first, pathogens are lethal in the absence of an appropriate immune defence; second, the effect of pathogens depends on host condition, with hosts in poorer condition being affected more strongly. Thus, our results show that HA can be a more potent force in explaining the extraordinary polymorphism found at MHC loci than currently recognised.

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.