Characterization of sequence determinants of enhancer function using natural genetic variation

  1. Marty G Yang
  2. Emi Ling
  3. Christopher J Cowley
  4. Michael E Greenberg  Is a corresponding author
  5. Thomas Vierbuchen  Is a corresponding author
  1. Harvard University, United States
  2. Rockefeller University, Howard Hughes Medical Institute, United States
  3. Memorial Sloan Kettering Cancer Center, United States

Abstract

Sequence variation in enhancers that control cell type-specific gene transcription contributes significantly to phenotypic variation within human populations. However, it remains difficult to predict precisely the effect of any given sequence variant on enhancer function due to the complexity of DNA sequence motifs that determine transcription factor (TF) binding to enhancers in their native genomic context. Using F1-hybrid cells derived from crosses between distantly related inbred strains of mice, we identified thousands of enhancers with allele-specific TF binding and/or activity. We find that genetic variants located within the central region of enhancers are most likely to alter TF binding and enhancer activity. We observe that the AP-1 family of TFs (Fos/Jun) are frequently required for binding of TEAD TFs and for enhancer function. However, many sequence variants outside of core motifs for AP-1 and TEAD also impact enhancer function, including sequences flanking core TF motifs and AP-1 half sites. Taken together, these data represent one of the most comprehensive assessments of allele-specific TF binding and enhancer function to date and reveal how sequence changes at enhancers alter their function across evolutionary timescales.

Data availability

We submitted our data to GEO, and it is now accessible via GSE193728.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Marty G Yang

    Department of Neurobiology, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Emi Ling

    Department of Neurobiology, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5287-0284
  3. Christopher J Cowley

    Laboratory of Mammalian Cell Biology and Development, Rockefeller University, Howard Hughes Medical Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael E Greenberg

    Department of Neurobiology, Harvard University, Boston, United States
    For correspondence
    meg@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Vierbuchen

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
    For correspondence
    vierbuct@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5690-5680

Funding

NIH Office of the Director (T32EY00711030)

  • Marty G Yang

NIH Office of the Director (T32AG000222)

  • Marty G Yang

National Science Foundation (DGE0946799)

  • Emi Ling

National Science Foundation (DGE1144152)

  • Emi Ling

NIH Office of the Director (R01 NS115965)

  • Michael E Greenberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the National Institutes of Health and the Harvard Medical School Institutional Animal Care and Use Committee and were conducted in compliance with the relevant ethical regulations (Protocol # IS00000074-3)

Reviewing Editor

  1. Stephen CJ Parker, University of Michigan, United States

Publication history

  1. Received: December 18, 2021
  2. Accepted: August 30, 2022
  3. Accepted Manuscript published: August 31, 2022 (version 1)

Copyright

© 2022, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 321
    Page views
  • 184
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marty G Yang
  2. Emi Ling
  3. Christopher J Cowley
  4. Michael E Greenberg
  5. Thomas Vierbuchen
(2022)
Characterization of sequence determinants of enhancer function using natural genetic variation
eLife 11:e76500.
https://doi.org/10.7554/eLife.76500
  1. Further reading

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Brandt Warecki, Simon William Abraham Titen ... William Sullivan
    Research Article

    Wolbachia, a vertically transmitted endosymbiont infecting many insects, spreads rapidly through uninfected populations by a mechanism known as cytoplasmic incompatibility (CI). In CI, a paternally delivered modification of the sperm leads to chromatin defects and lethality during and after the first mitosis of embryonic development in multiple species. However, whether CI-induced defects in later stage embryos are a consequence of the first division errors or caused by independent defects remains unresolved. To address this question, we focused on ~1/3 of embryos from CI crosses in Drosophila simulans that develop apparently normally through the first and subsequent pre-blastoderm divisions before exhibiting mitotic errors during the mid-blastula transition and gastrulation. We performed single embryo PCR and whole genome sequencing to find a large percentage of these developed CI-derived embryos bypass the first division defect. Using fluorescence in situ hybridization, we find increased chromosome segregation errors in gastrulating CI-derived embryos that had avoided the first division defect. Thus, Wolbachia action in the sperm induces developmentally deferred defects that are not a consequence of the first division errors. Like the immediate defect, the delayed defect is rescued through crosses to infected females. These studies inform current models on the molecular and cellular basis of CI.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Arnaud Carrier, Cécile Desjobert ... Paola B Arimondo
    Research Article

    Aberrant DNA methylation is a well‑known feature of tumours and has been associated with metastatic melanoma. However, since melanoma cells are highly heterogeneous, it has been challenging to use affected genes to predict tumour aggressiveness, metastatic evolution, and patients' outcomes. We hypothesized that common aggressive hypermethylation signatures should emerge early in tumorigenesis and should be shared in aggressive cells, independent of the physiological context under which this trait arises. We compared paired melanoma cell lines with the following properties: (i) each pair comprises one aggressive counterpart and its parental cell line, and (ii) the aggressive cell lines were each obtained from different host and their environment (human, rat, and mouse), though starting from the same parent cell line. Next, we developed a multi-step genomic pipeline that combines the DNA methylome profile with a chromosome cluster-oriented analysis. A total of 229 differentially hypermethylated genes were commonly found in the aggressive cell lines. Genome localization analysis revealed hypermethylation peaks and clusters, identifying eight hypermethylated gene promoters for validation in tissues from melanoma patients. Five CpG identified in primary melanoma tissues were transformed into a DNA methylation score that can predict survival (Log-rank test, p=0.0008). This strategy is potentially universally applicable to other diseases involving DNA methylation alterations.