BIRC6 modifies risk of invasive bacterial infection in Kenyan children

  1. James Gilchrist  Is a corresponding author
  2. Silvia N Kariuki
  3. James A Watson
  4. Gavin Band
  5. Sophie Uyoga
  6. Carolyne M Ndila
  7. Neema Mturi
  8. Salim Mwarumba
  9. Shebe Mohammed
  10. Moses Mosobo
  11. Kaur Alasoo
  12. Kirk A Rockett
  13. Alexander J Mentzer
  14. Dominic P Kwiatkowski
  15. Adrian VS Hill
  16. Kathryn Maitland
  17. J Anthony G Scott
  18. Thomas N Williams  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Kenya Medical Research Institute, Kenya
  3. Mahidol Oxford Tropical Medicine Research Unit, Thailand
  4. University of Tartu, Estonia

Abstract

Invasive bacterial disease is a major cause of morbidity and mortality in African children. Despite being caused by diverse pathogens, children with sepsis are clinically indistinguishable from one another. In spite of this, most genetic susceptibility loci for invasive infection that have been discovered to date are pathogen specific and are not therefore suggestive of a shared genetic architecture of bacterial sepsis. Here we utilise probabilistic diagnostic models to identify children with a high probability of invasive bacterial disease among critically unwell Kenyan children with P. falciparum parasitaemia. We construct a joint dataset including 1,445 bacteraemia cases and 1,143 severe malaria cases, and population controls, among critically unwell Kenyan children that have previously been genotyped for human genetic variation. Using these data we perform a cross-trait genome-wide association study of invasive bacterial infection, weighting cases according to their probability of bacterial disease. In doing so we identify and validate a novel risk locus for invasive infection secondary to multiple bacterial pathogens, that has no apparent effect on malaria risk. The locus identified modifies splicing of BIRC6 in stimulated monocytes, implicating regulation of apoptosis and autophagy in the pathogenesis of sepsis in Kenyan children.

Data availability

Patient level genotype and phenotype data are available via the European Genome-Phenome Archive, with accession codes EGAD00010000950 (WTCCC2: bacteraemia cases and controls) and EGAD00010000904 (MalariaGEN Consortium: severe malaria cases and controls).Full GWAS summary statistics have been deposited with the GWAS Catalog with accession code GCST90094632.Code and source data underlying each figure (and supplementary figure) are available at: https://github.com/jjgilchrist/Kenya_bacteraemia_malaria

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. James Gilchrist

    Department of Paediatrics, University of Oxford, Oxford, United Kingdom
    For correspondence
    james.gilchrist@paediatrics.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2045-6788
  2. Silvia N Kariuki

    Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  3. James A Watson

    Malaria, Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5524-0325
  4. Gavin Band

    Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Sophie Uyoga

    Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  6. Carolyne M Ndila

    Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  7. Neema Mturi

    Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  8. Salim Mwarumba

    .Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  9. Shebe Mohammed

    Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  10. Moses Mosobo

    Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  11. Kaur Alasoo

    Institute of Computer Science, University of Tartu, Tartu, Estonia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1761-8881
  12. Kirk A Rockett

    Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Alexander J Mentzer

    Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Dominic P Kwiatkowski

    Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Adrian VS Hill

    Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Kathryn Maitland

    Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0007-0645
  17. J Anthony G Scott

    Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7533-5006
  18. Thomas N Williams

    Wellcome Trust Research Programme, Kenya Medical Research Institute, Kilifi, Kenya
    For correspondence
    TWilliams@kemri-wellcome.org
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome Trust (202800)

  • Thomas N Williams

Wellcome Trust (098532)

  • J Anthony G Scott

National Institute for Health and Care Research

  • James Gilchrist

National Institute for Health and Care Research

  • Alexander J Mentzer

Wellcome Trust (223253/Z/21/Z)

  • James A Watson

Wellcome Trust (209265/Z/17/Z)

  • Kathryn Maitland
  • Thomas N Williams

Wellcome Trust (HCUZZ0)

  • Adrian VS Hill

European Research Council (294557)

  • Adrian VS Hill

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Following explanation of the study, written informed consent was obtained from the parent or guardian of each child included in the study. Ethical approval was obtained from the Kenya Medical Research Institute (KEMRI) National Scientific Steering and Research Committees (approval numbers; SCC1192 and SCC967) and the Oxford Tropical Research Ethics Committee (OxTREC, approval numbers; 020-06 and 014-01).

Reviewing Editor

  1. Alexander Young, University of California, Los Angeles, United States

Publication history

  1. Received: January 31, 2022
  2. Accepted: July 22, 2022
  3. Accepted Manuscript published: July 22, 2022 (version 1)

Copyright

© 2022, Gilchrist et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 128
    Page views
  • 54
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James Gilchrist
  2. Silvia N Kariuki
  3. James A Watson
  4. Gavin Band
  5. Sophie Uyoga
  6. Carolyne M Ndila
  7. Neema Mturi
  8. Salim Mwarumba
  9. Shebe Mohammed
  10. Moses Mosobo
  11. Kaur Alasoo
  12. Kirk A Rockett
  13. Alexander J Mentzer
  14. Dominic P Kwiatkowski
  15. Adrian VS Hill
  16. Kathryn Maitland
  17. J Anthony G Scott
  18. Thomas N Williams
(2022)
BIRC6 modifies risk of invasive bacterial infection in Kenyan children
eLife 11:e77461.
https://doi.org/10.7554/eLife.77461

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Divya Khattar et al.
    Research Article

    The tips of the developing respiratory buds are home to important progenitor cells marked by the expression of SOX9 and ID2. Early in embryonic development (prior to E13.5), SOX9+ progenitors are multipotent, generating both airway and alveolar epithelium, but are selective progenitors of alveolar epithelial cells later in development. Transcription factors, including Sox9, Etv5, Irx, Mycn, and Foxp1/2 interact in complex gene regulatory networks to control proliferation and differentiation of SOX9+ progenitors. Molecular mechanisms by which these transcription factors and other signaling pathways control chromatin state to establish and maintain cell-type identity are not well-defined. Herein, we analyze paired gene expression (RNA-Seq) and chromatin accessibility (ATAC-Seq) data from SOX9+ epithelial progenitor cells (EPCs) during embryonic development in Mus musculus. Widespread changes in chromatin accessibility were observed between E11.5 and E16.5, particularly at distal cis-regulatory elements (e.g. enhancers). Gene regulatory network (GRN) inference identified a common SOX9+ progenitor GRN, implicating phosphoinositide 3-kinase (PI3K) signaling in the developmental regulation of SOX9+ progenitor cells. Consistent with this model, conditional ablation of PI3K signaling in the developing lung epithelium in mouse resulted in an expansion of the SOX9+ EPC population and impaired airway epithelial cell differentiation. These data demonstrate that PI3K signaling is required for epithelial patterning during lung organogenesis, and emphasize the combinatorial power of paired RNA and ATAC seq in defining regulatory networks in development.

    1. Developmental Biology
    2. Genetics and Genomics
    Ruhi Patel et al.
    Research Article

    Animal development requires coordination among cyclic processes, sequential cell fate specifications, and once-a-lifetime morphogenic events, but the underlying timing mechanisms are not well understood. Caenorhabditis elegans undergoes four molts at regular 8 to 10 hour intervals. The pace of the cycle is governed by PERIOD/lin-42 and other as-yet unknown factors. Cessation of the cycle in young adults is controlled by the let-7 family of microRNAs and downstream transcription factors in the heterochronic pathway. Here, we characterize a negative feedback loop between NHR-23, the worm homolog of mammalian retinoid-related orphan receptors (RORs), and the let-7 family of microRNAs that regulates both the frequency and finite number of molts. The molting cycle is decelerated in nhr-23 knockdowns and accelerated in let-7(−) mutants, but timed similarly in let-7(−) nhr-23(−) double mutants and wild-type animals. NHR-23 binds response elements (ROREs) in the let-7 promoter and activates transcription. In turn, let-7 dampens nhr-23 expression across development via a complementary let-7-binding site (LCS) in the nhr-23 3′ UTR. The molecular interactions between NHR-23 and let-7 hold true for other let-7 family microRNAs. Either derepression of nhr-23 transcripts by LCS deletion or high gene dosage of nhr-23 leads to protracted behavioral quiescence and extra molts in adults. NHR-23 and let-7 also coregulate scores of genes required for execution of the molts, including lin-42. In addition, ROREs and LCSs isolated from mammalian ROR and let-7 genes function in C. elegans, suggesting conservation of this feedback mechanism. We propose that this feedback loop unites the molting timer and the heterochronic gene regulatory network, possibly by functioning as a cycle counter.