Immune dynamics in SARS-CoV-2 experienced immunosuppressed rheumatoid arthritis or multiple sclerosis patients vaccinated with mRNA-1273
Abstract
Background: Patients affected by different types of autoimmune diseases, including common conditions such as Multiple Sclerosis (MS) and Rheumatoid Arthritis (RA), are often treated with immunosuppressants to suppress disease activity. It is not fully understood how the SARS-CoV-2 specific humoral and cellular immunity induced by infection and/or upon vaccination is affected by immunosuppressants.
Methods: The dynamics of cellular immune reactivation upon vaccination of SARS-CoV-2 experienced MS patients treated with the humanized anti-CD20 monoclonal antibody ocrelizumab (OCR) and RA patients treated with methotrexate (MTX) monotherapy were analyzed at great depth via high-dimensional flow cytometry of whole blood samples upon vaccination with the SARS-CoV-2 mRNA-1273 (Moderna) vaccine. Longitudinal B and T cell immune responses were compared to SARS-CoV-2 experienced healthy controls (HC) before and 7-days after the first and second vaccination.
Results: OCR-treated MS patients exhibit a preserved recall response of CD8+ T central memory cells following first vaccination compared to healthy controls and a similar CD4+ circulating T follicular helper 1 and T helper 1 dynamics, whereas humoral and B cell responses were strongly impaired resulting in absence of SARS-CoV-2 specific humoral immunity. MTX treatment significantly delayed antibody levels and B reactivation following the first vaccination, including sustained inhibition of overall reactivation marker dynamics of the responding CD4+ and CD8+ T cells.
Conclusion: Together, these findings indicate that SARS-CoV-2 experienced MS-OCR patients still benefit from vaccination by inducing a broad CD8+ T cell response which can contribute to milder disease outcome. A delayed dynamics of vaccine-induced immunological recall in RA-MTX patients support repeated vaccine strategies to protect against future variants of concern, especially for these patients.
Funding: This research project was supported by ZonMw (The Netherlands Organization for Health Research and Development, #10430072010007), the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#792532 and #860003), the European Commission (SUPPORT-E, #101015756) and by PPOC (#20_21 L2506), the NHMRC Leadership Investigator Grant (#1173871).
Data availability
All raw and processed data presented in this study are available at https://flowrepository.org/id/FR-FCM-Z52K
Article and author information
Author details
Funding
ZonMw (#10430072010007)
- Taco W Kuijpers
- Filip Eftimov
- Theo Rispens
Horizon 2020 Framework Programme (#860003)
- Taco W Kuijpers
- Filip Eftimov
- Theo Rispens
- Carolien E van de Sandt
European Commission (#101015756)
- Niels JM Verstegen
Horizon 2020 Framework Programme (#792532)
- Carolien E van de Sandt
NHMRC (1173871)
- Joep Killestein
PPOC (#20_21 L2506)
- Taco W Kuijpers
- Filip Eftimov
- Theo Rispens
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: This study was approved by the medical ethical committee (NL74974.018.20 and EudraCT 2021-001102-30, local METC nummer: 2020_194) and registered at Dutch Trial Register (Trial ID NL8900). Written informed consent was obtained from all study participants when enrolled. Participants were recruited between April 16th 2021 and May 20th 2021 at the MS Center Amsterdam, Amsterdam UMC and the Amsterdam READE Rheumatology and Immunology Center and vaccinated between April 19th 2021 and July 1st 2021 with the mRNA-1273 (Moderna) vaccine at an interval of six weeks, according to the Dutch national vaccination guidelines.
Copyright
© 2022, Verstegen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,315
- views
-
- 328
- downloads
-
- 16
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
Gastrointestinal (GI) colonization by methicillin-resistant Staphylococcus aureus (MRSA) is associated with a high risk of transmission and invasive disease in vulnerable populations. The immune and microbial factors that permit GI colonization remain unknown. Male sex is correlated with enhanced Staphylococcus aureus nasal carriage, skin and soft tissue infections, and bacterial sepsis. Here, we established a mouse model of sexual dimorphism during GI colonization by MRSA. Our results show that in contrast to male mice that were susceptible to persistent colonization, female mice rapidly cleared MRSA from the GI tract following oral inoculation in a manner dependent on the gut microbiota. This colonization resistance displayed by female mice was mediated by an increase in IL-17A+ CD4+ T cells (Th17) and dependent on neutrophils. Ovariectomy of female mice increased MRSA burden, but gonadal female mice that have the Y chromosome retained enhanced Th17 responses and colonization resistance. Our study reveals a novel intersection between sex and gut microbiota underlying colonization resistance against a major widespread pathogen.
-
- Immunology and Inflammation
- Structural Biology and Molecular Biophysics
A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.