Parallel processing, hierarchical transformations, and sensorimotor associations along the 'where' pathway

  1. Raymond Doudlah
  2. Ting-Yu Chang
  3. Lowell W Thompson
  4. Byounghoon Kim
  5. Adhira Sunkara
  6. Ari Rosenberg  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. WiSys Technology Foundation, United States

Abstract

Visually guided behaviors require the brain to transform ambiguous retinal images into object-level spatial representations and implement sensorimotor transformations. These processes are supported by the dorsal 'where' pathway. However, the specific functional contributions of areas along this pathway remain elusive due in part to methodological differences across studies. We previously showed that macaque caudal intraparietal (CIP) area neurons possess robust three-dimensional (3D) visual representations, carry choice- and saccade-related activity, and exhibit experience-dependent sensorimotor associations (Chang et al., 2020b). Here, we used a common experimental design to reveal parallel processing, hierarchical transformations, and the formation of sensorimotor associations along the 'where' pathway by extending the investigation to V3A, a major feedforward input to CIP. Higher-level 3D representations and choice-related activity were more prevalent in CIP than V3A. Both areas contained saccade-related activity that predicted the direction/timing of eye movements. Intriguingly, the time-course of saccade-related activity in CIP aligned with the temporally integrated V3A output. Sensorimotor associations between 3D orientation and saccade direction preferences were stronger in CIP than V3A, and moderated by choice signals in both areas. Together, the results explicate parallel representations, hierarchical transformations, and functional associations of visual and saccade-related signals at a key juncture in the 'where' pathway.

Data availability

All data generated or analyzed during this study are available through the Open Science Framework. https://osf.io/8wxk7/

Article and author information

Author details

  1. Raymond Doudlah

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3631-5947
  2. Ting-Yu Chang

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3964-0905
  3. Lowell W Thompson

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Byounghoon Kim

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7159-5134
  5. Adhira Sunkara

    WiSys Technology Foundation, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ari Rosenberg

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    For correspondence
    ari.rosenberg@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8606-2987

Funding

National Institutes of Health (T32EY027721)

  • Raymond Doudlah

National Science Foundation (DGE-1545481)

  • Raymond Doudlah
  • Lowell W Thompson

National Institutes of Health (T32NS105602)

  • Lowell W Thompson

McPherson Eye Research Institute (Graduate Student Support Initiative)

  • Lowell W Thompson

Alfred P. Sloan Foundation (FG-2016-6468)

  • Ari Rosenberg

Whitehall Foundation (2016-08-18)

  • Ari Rosenberg

Greater Milwaukee Foundation (Shaw Scientist Award)

  • Ari Rosenberg

National Institutes of Health (EY029438)

  • Ari Rosenberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations of the National Institutes of Health's Guide for the Care and Use of Laboratory Animals. All experimental procedures and surgeries were approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Wisconsin-Madison (Protocol #: G005229).

Reviewing Editor

  1. David J Freedman, The University of Chicago, United States

Publication history

  1. Received: March 22, 2022
  2. Preprint posted: March 23, 2022 (view preprint)
  3. Accepted: August 10, 2022
  4. Accepted Manuscript published: August 11, 2022 (version 1)
  5. Version of Record published: September 2, 2022 (version 2)

Copyright

© 2022, Doudlah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 709
    Page views
  • 182
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raymond Doudlah
  2. Ting-Yu Chang
  3. Lowell W Thompson
  4. Byounghoon Kim
  5. Adhira Sunkara
  6. Ari Rosenberg
(2022)
Parallel processing, hierarchical transformations, and sensorimotor associations along the 'where' pathway
eLife 11:e78712.
https://doi.org/10.7554/eLife.78712

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Karthickeyan Chella Krishnan, Elie-Julien El Hachem ... Aldons J Lusis
    Research Article

    Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High-resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations.

    1. Computational and Systems Biology
    Swann Floc'hlay, Ramya Balaji ... Stein Aerts
    Research Article Updated

    Wound response programs are often activated during neoplastic growth in tumors. In both wound repair and tumor growth, cells respond to acute stress and balance the activation of multiple programs, including apoptosis, proliferation, and cell migration. Central to those responses are the activation of the JNK/MAPK and JAK/STAT signaling pathways. Yet, to what extent these signaling cascades interact at the cis-regulatory level and how they orchestrate different regulatory and phenotypic responses is still unclear. Here, we aim to characterize the regulatory states that emerge and cooperate in the wound response, using the Drosophila melanogaster wing disc as a model system, and compare these with cancer cell states induced by rasV12scrib-/- in the eye disc. We used single-cell multiome profiling to derive enhancer gene regulatory networks (eGRNs) by integrating chromatin accessibility and gene expression signals. We identify a ‘proliferative’ eGRN, active in the majority of wounded cells and controlled by AP-1 and STAT. In a smaller, but distinct population of wound cells, a ‘senescent’ eGRN is activated and driven by C/EBP-like transcription factors (Irbp18, Xrp1, Slow border, and Vrille) and Scalloped. These two eGRN signatures are found to be active in tumor cells at both gene expression and chromatin accessibility levels. Our single-cell multiome and eGRNs resource offers an in-depth characterization of the senescence markers, together with a new perspective on the shared gene regulatory programs acting during wound response and oncogenesis.