Parallel processing, hierarchical transformations, and sensorimotor associations along the 'where' pathway

  1. Raymond Doudlah
  2. Ting-Yu Chang
  3. Lowell W Thompson
  4. Byounghoon Kim
  5. Adhira Sunkara
  6. Ari Rosenberg  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. WiSys Technology Foundation, United States

Abstract

Visually guided behaviors require the brain to transform ambiguous retinal images into object-level spatial representations and implement sensorimotor transformations. These processes are supported by the dorsal 'where' pathway. However, the specific functional contributions of areas along this pathway remain elusive due in part to methodological differences across studies. We previously showed that macaque caudal intraparietal (CIP) area neurons possess robust three-dimensional (3D) visual representations, carry choice- and saccade-related activity, and exhibit experience-dependent sensorimotor associations (Chang et al., 2020b). Here, we used a common experimental design to reveal parallel processing, hierarchical transformations, and the formation of sensorimotor associations along the 'where' pathway by extending the investigation to V3A, a major feedforward input to CIP. Higher-level 3D representations and choice-related activity were more prevalent in CIP than V3A. Both areas contained saccade-related activity that predicted the direction/timing of eye movements. Intriguingly, the time-course of saccade-related activity in CIP aligned with the temporally integrated V3A output. Sensorimotor associations between 3D orientation and saccade direction preferences were stronger in CIP than V3A, and moderated by choice signals in both areas. Together, the results explicate parallel representations, hierarchical transformations, and functional associations of visual and saccade-related signals at a key juncture in the 'where' pathway.

Data availability

All data generated or analyzed during this study are available through the Open Science Framework. https://osf.io/8wxk7/

Article and author information

Author details

  1. Raymond Doudlah

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3631-5947
  2. Ting-Yu Chang

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3964-0905
  3. Lowell W Thompson

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Byounghoon Kim

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7159-5134
  5. Adhira Sunkara

    WiSys Technology Foundation, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ari Rosenberg

    Department of Neuroscience, University of Wisconsin-Madison, Madison, United States
    For correspondence
    ari.rosenberg@wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8606-2987

Funding

National Institutes of Health (T32EY027721)

  • Raymond Doudlah

National Science Foundation (DGE-1545481)

  • Raymond Doudlah
  • Lowell W Thompson

National Institutes of Health (T32NS105602)

  • Lowell W Thompson

McPherson Eye Research Institute (Graduate Student Support Initiative)

  • Lowell W Thompson

Alfred P. Sloan Foundation (FG-2016-6468)

  • Ari Rosenberg

Whitehall Foundation (2016-08-18)

  • Ari Rosenberg

Greater Milwaukee Foundation (Shaw Scientist Award)

  • Ari Rosenberg

National Institutes of Health (EY029438)

  • Ari Rosenberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David J Freedman, The University of Chicago, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations of the National Institutes of Health's Guide for the Care and Use of Laboratory Animals. All experimental procedures and surgeries were approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Wisconsin-Madison (Protocol #: G005229).

Version history

  1. Received: March 22, 2022
  2. Preprint posted: March 23, 2022 (view preprint)
  3. Accepted: August 10, 2022
  4. Accepted Manuscript published: August 11, 2022 (version 1)
  5. Version of Record published: September 2, 2022 (version 2)

Copyright

© 2022, Doudlah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 924
    views
  • 209
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raymond Doudlah
  2. Ting-Yu Chang
  3. Lowell W Thompson
  4. Byounghoon Kim
  5. Adhira Sunkara
  6. Ari Rosenberg
(2022)
Parallel processing, hierarchical transformations, and sensorimotor associations along the 'where' pathway
eLife 11:e78712.
https://doi.org/10.7554/eLife.78712

Share this article

https://doi.org/10.7554/eLife.78712

Further reading

    1. Computational and Systems Biology
    Hedi Chen, Xiaoyu Fan ... Boxue Tian
    Research Article

    Accurate prediction of the structurally diverse complementarity determining region heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal antibodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein language model and provides a 2.24 Å average RMSD between predicted and experimentally determined CDR-H3 loops, thus outperforming other current computational methods in our non-redundant high-quality dataset. The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT through analyzing antibody surface properties and antibody–antigen interactions. This structural prediction tool can be used to optimize antibody–antigen binding and engineer therapeutic antibodies with biophysical properties for specialized drug administration route.

    1. Computational and Systems Biology
    2. Medicine
    Zachary Shaffer, Roberto Romero ... Nardhy Gomez-Lopez
    Research Article

    Background:

    Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB.

    Methods:

    Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations.

    Results:

    Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB.

    Conclusions:

    The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes.

    Funding:

    This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.