m6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5' splice site

Abstract

Alternative splicing of messenger RNAs is associated with the evolution of developmentally complex eukaryotes. Splicing is mediated by the spliceosome, and docking of the pre-mRNA 5' splice site into the spliceosome active site depends upon pairing with the conserved ACAGA sequence of U6 snRNA. In some species, including humans, the central adenosine of the ACAGA box is modified by N6 methylation, but the role of this m6A modification is poorly understood. Here we show that m6A modified U6 snRNA determines the accuracy and efficiency of splicing. We reveal that the conserved methyltransferase, FIO1, is required for Arabidopsis U6 snRNA m6A modification. Arabidopsis fio1 mutants show disrupted patterns of splicing that can be explained by the sequence composition of 5' splice sites and cooperative roles for U5 and U6 snRNA in splice site selection. U6 snRNA m6A influences 3' splice site usage. We generalise these findings to reveal two major classes of 5' splice site in diverse eukaryotes, which display anti-correlated interaction potential with U5 snRNA loop 1 and the U6 snRNA ACAGA box. We conclude that U6 snRNA m6A modification contributes to the selection of degenerate 5' splice sites crucial to alternative splicing.

Data availability

Illumina sequencing data from the genetic screen that identified fio1-4 is available from ENA accession PRJEB51468. Col-0, fip37-4 and fio1-1 nanopore DRS data is available from ENA accession PRJEB51364. Col-0 and fio1-3 Illumina RNA-Seq data is available from ENA accession PRJEB51363.

The following data sets were generated

Article and author information

Author details

  1. Matthew T Parker

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0891-8495
  2. Beth K Soanes

    School of Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jelena Kusakina

    School of Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Antoine Larrieu

    School of Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Katarzyna Knop

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2636-9450
  6. Nisha Joy

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Friedrich Breidenbach

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9610-1927
  8. Anna V Sherwood

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Geoffrey J Barton

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9014-5355
  10. Sebastian M Fica

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Brendan H Davies

    School of Biology, University of Leeds, Leeds, United Kingdom
    For correspondence
    b.h.davies@leeds.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  12. Gordon Grant Simpson

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    For correspondence
    g.g.simpson@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6744-5889

Funding

Biotechnology and Biological Sciences Research Council (BB/W002302/1)

  • Geoffrey J Barton
  • Gordon Grant Simpson

Wellcome Trust (220212/Z/20/Z)

  • Sebastian M Fica

Global Challenges Research Fund (University of Dundee Global Challenges Research Fund)

  • Geoffrey J Barton
  • Gordon Grant Simpson

Biotechnology and Biological Sciences Research Council (BB/M010066/1)

  • Geoffrey J Barton
  • Gordon Grant Simpson

Biotechnology and Biological Sciences Research Council (BB/M004155/1)

  • Geoffrey J Barton
  • Gordon Grant Simpson

Biotechnology and Biological Sciences Research Council (BB/W007673/1)

  • Geoffrey J Barton
  • Gordon Grant Simpson

Biotechnology and Biological Sciences Research Council (BB/M000338/1)

  • Brendan H Davies

Biotechnology and Biological Sciences Research Council (BB/W007967/1)

  • Brendan H Davies

Biotechnology and Biological Sciences Research Council (BB/T007222/1)

  • Beth K Soanes
  • Brendan H Davies

HORIZON EUROPE Marie Sklodowska-Curie Actions (799300)

  • Katarzyna Knop

HORIZON EUROPE Marie Sklodowska-Curie Actions (896598)

  • Nisha Joy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jonathan P Staley, University of Chicago, United States

Version history

  1. Received: March 21, 2022
  2. Preprint posted: April 5, 2022 (view preprint)
  3. Accepted: November 20, 2022
  4. Accepted Manuscript published: November 21, 2022 (version 1)
  5. Version of Record published: December 30, 2022 (version 2)

Copyright

© 2022, Parker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,279
    Page views
  • 307
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew T Parker
  2. Beth K Soanes
  3. Jelena Kusakina
  4. Antoine Larrieu
  5. Katarzyna Knop
  6. Nisha Joy
  7. Friedrich Breidenbach
  8. Anna V Sherwood
  9. Geoffrey J Barton
  10. Sebastian M Fica
  11. Brendan H Davies
  12. Gordon Grant Simpson
(2022)
m6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5' splice site
eLife 11:e78808.
https://doi.org/10.7554/eLife.78808

Share this article

https://doi.org/10.7554/eLife.78808

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.