Abstract

The transcription factor TEAD, together with its coactivator YAP/TAZ, is a key transcriptional modulator of the Hippo pathway. Activation of TEAD transcription by YAP has been implicated in a number of malignancies, and this complex represents a promising target for drug discovery. However, both YAP and its extensive binding interfaces to TEAD have been difficult to address using small molecules, mainly due to a lack of druggable pockets. TEAD is post-translationally modified by palmitoylation that targets a conserved cysteine at a central pocket, which provides an opportunity to develop cysteine-directed covalent small molecules for TEAD inhibition. Here, we employed covalent fragment screening approach followed by structure-based design to develop an irreversible TEAD inhibitor MYF-03-69. Using a range of in vitro and cell-based assays we demonstrated that through a covalent binding with TEAD palmitate pocket, MYF-03-69 disrupts YAP-TEAD association, suppresses TEAD transcriptional activity and inhibits cell growth of Hippo signaling defective malignant pleural mesothelioma (MPM). Further, a cell viability screening with a panel of 903 cancer cell lines indicated a high correlation between TEAD-YAP dependency and the sensitivity to MYF-03-69. Transcription profiling identified the upregulation of proapoptotic BMF gene in cancer cells that are sensitive to TEAD inhibition. Further optimization of MYF-03-69 led to an in vivo compatible compound MYF-03-176, which shows strong antitumor efficacy in MPM mouse xenograft model via oral administration. Taken together, we disclosed a story of the development of covalent TEAD inhibitors and its high therapeutic potential for clinic treatment for the cancers that are driven by TEAD-YAP alteration.

Data availability

Diffraction data have been deposited in PDB under the accession code 7LI5.RNA sequencing data have been deposited in BioSample database under accession codes SAMN19288936, SAMN19288937, SAMN19288938, SAMN19288939, SAMN19288940, SAMN19288941, SAMN19288942, SAMN19288943, SAMN19288944, SAMN19288945 and SAMN19288946.All datasets generated or analyzed during this study have been deposited in Dryad.Uncropped gels or blots image of Figure 1e, 2e, 3a, 3b, 4d and their related figure supplement 3, 4, 7 were provided in the zipped folder "Source data files".

The following data sets were generated

Article and author information

Author details

  1. Mengyang Fan

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Mengyang Fan, is one of the inventors on TEAD inhibitor patents (WO2020081572A1).
  2. Wenchao Lu

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1175-365X
  3. Jianwei Che

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Jianwei Che, is a consultant to Soltego, Jengu, Allorion, EoCys, and equity holder for Soltego, Allorion, EoCys, and M3 bioinformatics & technology Inc..
  4. Nicholas P Kwiatkowski

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  5. Yang Gao

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Yang Gao, is one of the inventors on TEAD inhibitor patents (WO2020081572A1).
  6. Hyuk-Soo Seo

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  7. Scott B Ficarro

    Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  8. Prafulla C Gokhale

    Experimental Therapeutics Core, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  9. Yao Liu

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Yao Liu, is one of the inventors on TEAD inhibitor patents (WO2020081572A1).
  10. Ezekiel A Geffken

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  11. Jimit Lakhani

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  12. Kijun Song

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6037-9345
  13. Miljan Kuljanin

    Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  14. Wenzhi Ji

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  15. Jie Jiang

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3795-672X
  16. Zhixiang He

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  17. Jason Tse

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  18. Andrew S Boghossian

    Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7008-8138
  19. Matthew G Rees

    Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  20. Melissa M Ronan

    Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  21. Jennifer A Roth

    Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  22. Joseph D Mancias

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  23. Jarrod A Marto

    The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  24. Sirano Dhe-Paganon

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  25. Tinghu Zhang

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    For correspondence
    ztinghu8@stanford.edu
    Competing interests
    Tinghu Zhang, is a consultant and equity holder of EoCys and is one of the inventors on TEAD inhibitor patents (WO2020081572A1)..
  26. Nathanael S Gray

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    For correspondence
    nsgray01@stanford.edu
    Competing interests
    Nathanael S Gray, is a founder, science advisory board (SAB) member and equity holder in Syros, Jengu, C4, B2S, Allorion, Inception, GSK, Larkspur (board member) and Soltego (board member). The Gray lab receives or has received research funding from Novartis, Takeda, Astellas, Taiho, Janssen, Kinogen, Voronoi, Interline, Springworks and Sanofi. TEAD inhibitors developed in this manuscript are licensed to a start-up ( Lighthorse) where Gray has a financial interest. N.S.G. is one of the inventors on TEAD inhibitor patents (WO2020081572A1)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5354-7403

Funding

The Gray lab has sponsored research agreement for TEAD inhibitor project with Epiphanes. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals acclimated for at least 5 days before initiation of the study. All in vivo studies were conducted at Dana-Farber Cancer Institute with the approval of the Institutional Animal Care and Use Committee in an AAALAC accredited vivarium.

Copyright

© 2022, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,541
    views
  • 1,034
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mengyang Fan
  2. Wenchao Lu
  3. Jianwei Che
  4. Nicholas P Kwiatkowski
  5. Yang Gao
  6. Hyuk-Soo Seo
  7. Scott B Ficarro
  8. Prafulla C Gokhale
  9. Yao Liu
  10. Ezekiel A Geffken
  11. Jimit Lakhani
  12. Kijun Song
  13. Miljan Kuljanin
  14. Wenzhi Ji
  15. Jie Jiang
  16. Zhixiang He
  17. Jason Tse
  18. Andrew S Boghossian
  19. Matthew G Rees
  20. Melissa M Ronan
  21. Jennifer A Roth
  22. Joseph D Mancias
  23. Jarrod A Marto
  24. Sirano Dhe-Paganon
  25. Tinghu Zhang
  26. Nathanael S Gray
(2022)
Covalent disruptor of YAP-TEAD association suppresses defective hippo signaling
eLife 11:e78810.
https://doi.org/10.7554/eLife.78810

Share this article

https://doi.org/10.7554/eLife.78810

Further reading

    1. Biochemistry and Chemical Biology
    Bernd K Gilsbach, Franz Y Ho ... Christian Johannes Gloeckner
    Research Article

    The Parkinson’s disease (PD)-linked protein Leucine-Rich Repeat Kinase 2 (LRRK2) consists of seven domains, including a kinase and a Roc G domain. Despite the availability of several high-resolution structures, the dynamic regulation of its unique intramolecular domain stack is nevertheless still not well understood. By in-depth biochemical analysis, assessing the Michaelis–Menten kinetics of the Roc G domain, we have confirmed that LRRK2 has, similar to other Roco protein family members, a KM value of LRRK2 that lies within the range of the physiological GTP concentrations within the cell. Furthermore, the R1441G PD variant located within a mutational hotspot in the Roc domain showed an increased catalytic efficiency. In contrast, the most common PD variant G2019S, located in the kinase domain, showed an increased KM and reduced catalytic efficiency, suggesting a negative feedback mechanism from the kinase domain to the G domain. Autophosphorylation of the G1+2 residue (T1343) in the Roc P-loop motif is critical for this phosphoregulation of both the KM and the kcat values of the Roc-catalyzed GTP hydrolysis, most likely by changing the monomer–dimer equilibrium. The LRRK2 T1343A variant has a similar increased kinase activity in cells compared to G2019S and the double mutant T1343A/G2019S has no further increased activity, suggesting that T1343 is crucial for the negative feedback in the LRRK2 signaling cascade. Together, our data reveal a novel intramolecular feedback regulation of the LRRK2 Roc G domain by a LRRK2 kinase-dependent mechanism. Interestingly, PD mutants differently change the kinetics of the GTPase cycle, which might in part explain the difference in penetrance of these mutations in PD patients.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.