Abstract

The transcription factor TEAD, together with its coactivator YAP/TAZ, is a key transcriptional modulator of the Hippo pathway. Activation of TEAD transcription by YAP has been implicated in a number of malignancies, and this complex represents a promising target for drug discovery. However, both YAP and its extensive binding interfaces to TEAD have been difficult to address using small molecules, mainly due to a lack of druggable pockets. TEAD is post-translationally modified by palmitoylation that targets a conserved cysteine at a central pocket, which provides an opportunity to develop cysteine-directed covalent small molecules for TEAD inhibition. Here, we employed covalent fragment screening approach followed by structure-based design to develop an irreversible TEAD inhibitor MYF-03-69. Using a range of in vitro and cell-based assays we demonstrated that through a covalent binding with TEAD palmitate pocket, MYF-03-69 disrupts YAP-TEAD association, suppresses TEAD transcriptional activity and inhibits cell growth of Hippo signaling defective malignant pleural mesothelioma (MPM). Further, a cell viability screening with a panel of 903 cancer cell lines indicated a high correlation between TEAD-YAP dependency and the sensitivity to MYF-03-69. Transcription profiling identified the upregulation of proapoptotic BMF gene in cancer cells that are sensitive to TEAD inhibition. Further optimization of MYF-03-69 led to an in vivo compatible compound MYF-03-176, which shows strong antitumor efficacy in MPM mouse xenograft model via oral administration. Taken together, we disclosed a story of the development of covalent TEAD inhibitors and its high therapeutic potential for clinic treatment for the cancers that are driven by TEAD-YAP alteration.

Data availability

Diffraction data have been deposited in PDB under the accession code 7LI5.RNA sequencing data have been deposited in BioSample database under accession codes SAMN19288936, SAMN19288937, SAMN19288938, SAMN19288939, SAMN19288940, SAMN19288941, SAMN19288942, SAMN19288943, SAMN19288944, SAMN19288945 and SAMN19288946.All datasets generated or analyzed during this study have been deposited in Dryad.Uncropped gels or blots image of Figure 1e, 2e, 3a, 3b, 4d and their related figure supplement 3, 4, 7 were provided in the zipped folder "Source data files".

The following data sets were generated

Article and author information

Author details

  1. Mengyang Fan

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Mengyang Fan, is one of the inventors on TEAD inhibitor patents (WO2020081572A1).
  2. Wenchao Lu

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1175-365X
  3. Jianwei Che

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Jianwei Che, is a consultant to Soltego, Jengu, Allorion, EoCys, and equity holder for Soltego, Allorion, EoCys, and M3 bioinformatics & technology Inc..
  4. Nicholas P Kwiatkowski

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  5. Yang Gao

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Yang Gao, is one of the inventors on TEAD inhibitor patents (WO2020081572A1).
  6. Hyuk-Soo Seo

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  7. Scott B Ficarro

    Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  8. Prafulla C Gokhale

    Experimental Therapeutics Core, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  9. Yao Liu

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Yao Liu, is one of the inventors on TEAD inhibitor patents (WO2020081572A1).
  10. Ezekiel A Geffken

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  11. Jimit Lakhani

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  12. Kijun Song

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6037-9345
  13. Miljan Kuljanin

    Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  14. Wenzhi Ji

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  15. Jie Jiang

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3795-672X
  16. Zhixiang He

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  17. Jason Tse

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  18. Andrew S Boghossian

    Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7008-8138
  19. Matthew G Rees

    Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  20. Melissa M Ronan

    Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  21. Jennifer A Roth

    Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  22. Joseph D Mancias

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  23. Jarrod A Marto

    The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  24. Sirano Dhe-Paganon

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  25. Tinghu Zhang

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    For correspondence
    ztinghu8@stanford.edu
    Competing interests
    Tinghu Zhang, is a consultant and equity holder of EoCys and is one of the inventors on TEAD inhibitor patents (WO2020081572A1)..
  26. Nathanael S Gray

    Department of Chemical and Systems Biology, Stanford University, Stanford, United States
    For correspondence
    nsgray01@stanford.edu
    Competing interests
    Nathanael S Gray, is a founder, science advisory board (SAB) member and equity holder in Syros, Jengu, C4, B2S, Allorion, Inception, GSK, Larkspur (board member) and Soltego (board member). The Gray lab receives or has received research funding from Novartis, Takeda, Astellas, Taiho, Janssen, Kinogen, Voronoi, Interline, Springworks and Sanofi. TEAD inhibitors developed in this manuscript are licensed to a start-up ( Lighthorse) where Gray has a financial interest. N.S.G. is one of the inventors on TEAD inhibitor patents (WO2020081572A1)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5354-7403

Funding

The Gray lab has sponsored research agreement for TEAD inhibitor project with Epiphanes. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals acclimated for at least 5 days before initiation of the study. All in vivo studies were conducted at Dana-Farber Cancer Institute with the approval of the Institutional Animal Care and Use Committee in an AAALAC accredited vivarium.

Copyright

© 2022, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,502
    views
  • 1,028
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mengyang Fan
  2. Wenchao Lu
  3. Jianwei Che
  4. Nicholas P Kwiatkowski
  5. Yang Gao
  6. Hyuk-Soo Seo
  7. Scott B Ficarro
  8. Prafulla C Gokhale
  9. Yao Liu
  10. Ezekiel A Geffken
  11. Jimit Lakhani
  12. Kijun Song
  13. Miljan Kuljanin
  14. Wenzhi Ji
  15. Jie Jiang
  16. Zhixiang He
  17. Jason Tse
  18. Andrew S Boghossian
  19. Matthew G Rees
  20. Melissa M Ronan
  21. Jennifer A Roth
  22. Joseph D Mancias
  23. Jarrod A Marto
  24. Sirano Dhe-Paganon
  25. Tinghu Zhang
  26. Nathanael S Gray
(2022)
Covalent disruptor of YAP-TEAD association suppresses defective hippo signaling
eLife 11:e78810.
https://doi.org/10.7554/eLife.78810

Share this article

https://doi.org/10.7554/eLife.78810

Further reading

    1. Biochemistry and Chemical Biology
    Bikash Adhikari, Katharina Schneider ... Elmar Wolf
    Research Article

    The development of proteolysis targeting chimeras (PROTACs), which induce the degradation of target proteins by bringing them into proximity with cellular E3 ubiquitin ligases, has revolutionized drug development. While the human genome encodes more than 600 different E3 ligases, current PROTACs use only a handful of them, drastically limiting their full potential. Furthermore, many PROTAC development campaigns fail because the selected E3 ligase candidates are unable to induce degradation of the particular target of interest. As more and more ligands for novel E3 ligases are discovered, the chemical effort to identify the best E3 ligase for a given target is exploding. Therefore, a genetic system to identify degradation-causing E3 ligases and suitable target/E3 ligase pairs is urgently needed. Here, we used the well-established dimerization of the FKBP12 protein and FRB domain by rapamycin to bring the target protein WDR5 into proximity with candidate E3 ligases. Strikingly, this rapamycin-induced proximity assay (RiPA) revealed that VHL, but not Cereblon, is able to induce WDR5 degradation - a finding previously made by PROTACs, demonstrating its predictive power. By optimizing the steric arrangement of all components and fusing the target protein with a minimal luciferase, RiPA can identify the ideal E3 for any target protein of interest in living cells, significantly reducing and focusing the chemical effort in the early stages of PROTAC development.

    1. Biochemistry and Chemical Biology
    2. Physics of Living Systems
    Debabrata Dey, Shir Marciano ... Gideon Schreiber
    Research Article

    For drugs to be active they have to reach their targets. Within cells this requires crossing the cell membrane, and then free diffusion, distribution, and availability. Here, we explored the in-cell diffusion rates and distribution of a series of small molecular fluorescent drugs, in comparison to proteins, by microscopy and fluorescence recovery after photobleaching (FRAP). While all proteins diffused freely, we found a strong correlation between pKa and the intracellular diffusion and distribution of small molecule drugs. Weakly basic, small-molecule drugs displayed lower fractional recovery after photobleaching and 10- to-20-fold slower diffusion rates in cells than in aqueous solutions. As, more than half of pharmaceutical drugs are weakly basic, they, are protonated in the cell cytoplasm. Protonation, facilitates the formation of membrane impermeable ionic form of the weak base small molecules. This results in ion trapping, further reducing diffusion rates of weakly basic small molecule drugs under macromolecular crowding conditions where other nonspecific interactions become more relevant and dominant. Our imaging studies showed that acidic organelles, particularly the lysosome, captured these molecules. Surprisingly, blocking lysosomal import only slightly increased diffusion rates and fractional recovery. Conversely, blocking protonation by N-acetylated analogues, greatly enhanced their diffusion and fractional recovery after FRAP. Based on these results, N-acetylation of small molecule drugs may improve the intracellular availability and distribution of weakly basic, small molecule drugs within cells.