Discovery of a new class of reversible TEA-domain transcription factor inhibitors with a novel binding mode

  1. Lu Hu  Is a corresponding author
  2. Yang Sun
  3. Shun Liu
  4. Hannah Erb
  5. Alka Singh
  6. Junhao Mao
  7. Xuelian Luo  Is a corresponding author
  8. Xu Wu  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. The University of Texas Southwestern Medical Centerh, United States
  3. University of Massachusetts Medical School, United States

Abstract

The TEA domain (TEAD) transcription factor forms a transcription co-activation complex with the key downstream effector of the Hippo pathway, YAP/TAZ. TEAD-YAP controls the expression of Hippo-responsive genes involved in cell proliferation, development, and tumorigenesis. Hyperactivation of TEAD-YAP activities is observed in many human cancers, and is associated with cancer cell proliferation, survival and immune evasion. Therefore, targeting the TEAD-YAP complex has emerged as an attractive therapeutic approach. We previously reported that the mammalian TEAD transcription factors (TEAD1-4) possess auto-palmitoylation activities and contain an evolutionarily conserved palmitate-binding pocket (PBP), which allows small molecule modulation. Since then, several reversible and irreversible inhibitors have been reported by binding to PBP. Here, we report a new class of TEAD inhibitors with a novel binding mode. Representative analog TM2 shows potent inhibition of TEAD auto-palmitoylation both in vitro and in cells. Surprisingly, the co-crystal structure of the human TEAD2 YAP-binding domain (YBD) in complex with TM2 reveals that TM2 adopts an unexpected binding mode by occupying not only the hydrophobic PBP, but also a new side binding pocket formed by hydrophilic residues. RNA-seq analysis shows that TM2 potently and specifically suppresses TEAD-YAP transcriptional activities. Consistently, TM2 exhibits strong anti-proliferation effects as a single agent or in combination with a MEK inhibitor in YAP-dependent cancer cells. These findings establish TM2 as a promising small molecule inhibitor against TEAD-YAP activities and provide new insights for designing novel TEAD inhibitors with enhanced selectivity and potency.

Data availability

The crystal structure of TEAD2 YBD in complex with TM2 has been deposited in the Protein Data Bank with accession codes 8CUH. The raw RNA-seq data of NCI-H226 treated with TM2, K975 and VT103 has been deposited in NCBI GEO and is accessible at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215114.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Lu Hu

    Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, United States
    For correspondence
    LHU8@mgh.harvard.edu
    Competing interests
    Lu Hu, is an inventor of a patent application covering TM2 and analogues as novel TEAD inhibitors..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1594-8828
  2. Yang Sun

    Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    No competing interests declared.
  3. Shun Liu

    Department of Pharmacology, The University of Texas Southwestern Medical Centerh, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1766-2057
  4. Hannah Erb

    Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    No competing interests declared.
  5. Alka Singh

    Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  6. Junhao Mao

    Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1980-1177
  7. Xuelian Luo

    Department of Pharmacology, The University of Texas Southwestern Medical Centerh, Dallas, United States
    For correspondence
    xuelian.luo@utsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5058-4695
  8. Xu Wu

    Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, United States
    For correspondence
    xwu@cbrc2.mgh.harvard.edu
    Competing interests
    Xu Wu, is an inventor of a patent application covering TM2 and analogues as novel TEAD inhibitors. Dr. Xu Wu has a financial interest in Tasca Therapuetics, which is developing small molecule modulators of TEAD palmitoylation and transcription factors. Dr. Wu's interests were reviewed and are managed by Mass General Hospital, and Mass General Brigham in accordance with their conflict of interest policies..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1624-0143

Funding

National Cancer Institute (R01CA219814)

  • Xu Wu

National Cancer Institute (R01CA238270)

  • Xu Wu

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK127180)

  • Junhao Mao

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK127207)

  • Junhao Mao

Welch Foundation (I-1932)

  • Xuelian Luo

Antidote Health Foundation for the cure of cancer (postdoc fellowship)

  • Lu Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Duojia Pan, UT Southwestern Medical Center and HHMI, United States

Publication history

  1. Received: May 12, 2022
  2. Accepted: November 11, 2022
  3. Accepted Manuscript published: November 18, 2022 (version 1)

Copyright

© 2022, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 345
    Page views
  • 158
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lu Hu
  2. Yang Sun
  3. Shun Liu
  4. Hannah Erb
  5. Alka Singh
  6. Junhao Mao
  7. Xuelian Luo
  8. Xu Wu
(2022)
Discovery of a new class of reversible TEA-domain transcription factor inhibitors with a novel binding mode
eLife 11:e80210.
https://doi.org/10.7554/eLife.80210
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Jinli Geng, Yingjun Tang ... Xiaodong Liu
    Research Article Updated

    Dynamic Ca2+ signals reflect acute changes in membrane excitability, and also mediate signaling cascades in chronic processes. In both cases, chronic Ca2+ imaging is often desired, but challenged by the cytotoxicity intrinsic to calmodulin (CaM)-based GCaMP, a series of genetically-encoded Ca2+ indicators that have been widely applied. Here, we demonstrate the performance of GCaMP-X in chronic Ca2+ imaging of cortical neurons, where GCaMP-X by design is to eliminate the unwanted interactions between the conventional GCaMP and endogenous (apo)CaM-binding proteins. By expressing in adult mice at high levels over an extended time frame, GCaMP-X showed less damage and improved performance in two-photon imaging of sensory (whisker-deflection) responses or spontaneous Ca2+ fluctuations, in comparison with GCaMP. Chronic Ca2+ imaging of one month or longer was conducted for cultured cortical neurons expressing GCaMP-X, unveiling that spontaneous/local Ca2+ transients progressively developed into autonomous/global Ca2+ oscillations. Along with the morphological indices of neurite length and soma size, the major metrics of oscillatory Ca2+, including rate, amplitude and synchrony were also examined. Dysregulations of both neuritogenesis and Ca2+ oscillations became discernible around 2–3 weeks after virus injection or drug induction to express GCaMP in newborn or mature neurons, which were exacerbated by stronger or prolonged expression of GCaMP. In contrast, neurons expressing GCaMP-X were significantly less damaged or perturbed, altogether highlighting the unique importance of oscillatory Ca2+ to neural development and neuronal health. In summary, GCaMP-X provides a viable solution for Ca2+ imaging applications involving long-time and/or high-level expression of Ca2+ probes.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Radhika A Varier, Theodora Sideri ... Folkert Jacobus van Werven
    Research Article

    N6-methyladenosine (m6A) RNA modification impacts mRNA fate primarily via reader proteins, which dictate processes in development, stress, and disease. Yet little is known about m6A function in Saccharomyces cerevisiae, which occurs solely during early meiosis. Here we perform a multifaceted analysis of the m6A reader protein Pho92/Mrb1. Cross-linking immunoprecipitation analysis reveals that Pho92 associates with the 3’end of meiotic mRNAs in both an m6A-dependent and independent manner. Within cells, Pho92 transitions from the nucleus to the cytoplasm, and associates with translating ribosomes. In the nucleus Pho92 associates with target loci through its interaction with transcriptional elongator Paf1C. Functionally, we show that Pho92 promotes and links protein synthesis to mRNA decay. As such, the Pho92-mediated m6A-mRNA decay is contingent on active translation and the CCR4-NOT complex. We propose that the m6A reader Pho92 is loaded co-transcriptionally to facilitate protein synthesis and subsequent decay of m6A modified transcripts, and thereby promotes meiosis.