Viscoelastic properties of suspended cells measured with shear flow deformation cytometry

  1. Richard Gerum
  2. Elham Mirzahossein
  3. Mar Eroles
  4. Jennifer Elsterer
  5. Astrid Mainka
  6. Andreas Bauer
  7. Selina Sonntag
  8. Alexander Winterl
  9. Johannes Bartl
  10. Lena Fischer
  11. Shada Abuhattum
  12. Ruchi Goswami
  13. Salvatore Girardo
  14. Jochen Guck
  15. Stefan Schrüfer
  16. Nadine Ströhlein
  17. Mojtaba Nosratlo
  18. Harald Herrmann
  19. Dorothea Schultheis
  20. Felix Rico
  21. Sebastian Johannes Müller
  22. Stephan Gekle
  23. Ben Fabry  Is a corresponding author
  1. York University, Canada
  2. University of Erlangen-Nuremberg, Germany
  3. Aix-Marseille Université, CNRS, U1006 INSERM, France
  4. Max Planck Institute for the Science of Light, Germany
  5. University Hospital Erlangen, Germany
  6. University of Bayreuth, Germany

Abstract

Numerous cell functions are accompanied by phenotypic changes in viscoelastic properties, and measuring them can help elucidate higher-level cellular functions in health and disease. We present a high-throughput, simple and low-cost microfluidic method for quantitatively measuring the elastic (storage) and viscous (loss) modulus of individual cells. Cells are suspended in a high-viscosity fluid and are pumped with high pressure through a 5.8 cm long and 200 μm wide microfluidic channel. The fluid shear stress induces large, near ellipsoidal cell deformations. In addition, the flow profile in the channel causes the cells to rotate in a tank-treading manner. From the cell deformation and tank treading frequency, we extract the frequency-dependent viscoelastic cell properties based on a theoretical framework developed by R. Roscoe that describes the deformation of a viscoelastic sphere in a viscous fluid under steady laminar flow. We confirm the accuracy of the method using atomic force microscopy-calibrated polyacrylamide beads and cells. Our measurements demonstrate that suspended cells exhibit power-law, soft glassy rheological behavior that is cell cycle-dependent and mediated by the physical interplay between the actin filament and intermediate filament networks.

Data availability

The software is available on GitHub, the data are available on Dryad.

The following data sets were generated

Article and author information

Author details

  1. Richard Gerum

    Department of Physics and Astronomy, York University, Toronto, Canada
    Competing interests
    Richard Gerum, is inventor in a patent application on this method (EP22150396.4) alongside SG and BF..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5893-2650
  2. Elham Mirzahossein

    Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    No competing interests declared.
  3. Mar Eroles

    Turing centre for living systems, Aix-Marseille Université, CNRS, U1006 INSERM, Marseille, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3571-0769
  4. Jennifer Elsterer

    Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    No competing interests declared.
  5. Astrid Mainka

    Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    No competing interests declared.
  6. Andreas Bauer

    Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    No competing interests declared.
  7. Selina Sonntag

    Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    No competing interests declared.
  8. Alexander Winterl

    Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    No competing interests declared.
  9. Johannes Bartl

    Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    No competing interests declared.
  10. Lena Fischer

    Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    No competing interests declared.
  11. Shada Abuhattum

    Biological Optomechanics, Max Planck Institute for the Science of Light, Erlangen, Germany
    Competing interests
    No competing interests declared.
  12. Ruchi Goswami

    Biological Optomechanics, Max Planck Institute for the Science of Light, Erlangen, Germany
    Competing interests
    No competing interests declared.
  13. Salvatore Girardo

    Biological Optomechanics, Max Planck Institute for the Science of Light, Erlangen, Germany
    Competing interests
    No competing interests declared.
  14. Jochen Guck

    Biological Optomechanics, Max Planck Institute for the Science of Light, Erlangen, Germany
    Competing interests
    No competing interests declared.
  15. Stefan Schrüfer

    Institute of Polymer Materials, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    No competing interests declared.
  16. Nadine Ströhlein

    Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    No competing interests declared.
  17. Mojtaba Nosratlo

    Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
    Competing interests
    No competing interests declared.
  18. Harald Herrmann

    Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
    Competing interests
    No competing interests declared.
  19. Dorothea Schultheis

    Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
    Competing interests
    No competing interests declared.
  20. Felix Rico

    Turing centre for living systems, Aix-Marseille Université, CNRS, U1006 INSERM, Marseille, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7757-8340
  21. Sebastian Johannes Müller

    Department of Physics, University of Bayreuth, Bayreuth, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6020-4991
  22. Stephan Gekle

    Department of Physics, University of Bayreuth, Bayreuth, Germany
    Competing interests
    Stephan Gekle, is an inventor in a patent application on this method (EP22150396.4)..
  23. Ben Fabry

    Institute of Polymer Materials, University of Erlangen-Nuremberg, Erlangen, Germany
    For correspondence
    ben.fabry@fau.de
    Competing interests
    Ben Fabry, is an inventor in a patent application on this method (EP22150396.4)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1737-0465

Funding

Deutsche Forschungsgemeinschaft (TRR-SFB 225 subprojects A01,A07 and B07)

  • Elham Mirzahossein

European Union's Horizon 2020 (No 812772)

  • Mar Eroles

European Union's Horizon 2020 (No 953121)

  • Mar Eroles

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alphee Michelot, Institut de Biologie du Développement, France

Publication history

  1. Received: March 21, 2022
  2. Accepted: August 30, 2022
  3. Accepted Manuscript published: September 2, 2022 (version 1)

Copyright

© 2022, Gerum et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 502
    Page views
  • 217
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard Gerum
  2. Elham Mirzahossein
  3. Mar Eroles
  4. Jennifer Elsterer
  5. Astrid Mainka
  6. Andreas Bauer
  7. Selina Sonntag
  8. Alexander Winterl
  9. Johannes Bartl
  10. Lena Fischer
  11. Shada Abuhattum
  12. Ruchi Goswami
  13. Salvatore Girardo
  14. Jochen Guck
  15. Stefan Schrüfer
  16. Nadine Ströhlein
  17. Mojtaba Nosratlo
  18. Harald Herrmann
  19. Dorothea Schultheis
  20. Felix Rico
  21. Sebastian Johannes Müller
  22. Stephan Gekle
  23. Ben Fabry
(2022)
Viscoelastic properties of suspended cells measured with shear flow deformation cytometry
eLife 11:e78823.
https://doi.org/10.7554/eLife.78823

Further reading

    1. Cell Biology
    2. Neuroscience
    Jinye Dai, Kif Liakath-Ali ... Thomas C Südhof
    Research Article

    At CA1àsubiculum synapses, alternatively spliced neurexin-1 (Nrxn1SS4+) and neurexin-3 (Nrxn3SS4+) enhance NMDA-receptors and suppress AMPA-receptors, respectively, without affecting synapse formation. Nrxn1SS4+ and Nrxn3SS4+ act by binding to secreted cerebellin-2 (Cbln2) that in turn activates postsynaptic GluD1 receptors. Whether neurexin-Cbln2-GluD1 signaling has additional functions besides regulating NMDA- and AMPA-receptors, and whether such signaling performs similar roles at other synapses, however, remains unknown. Here, we demonstrate using constitutive Cbln2 deletions in mice that at CA1àsubiculum synapses, Cbln2 performs no additional developmental roles besides regulating AMPA- and NMDA-receptors. Moreover, low-level expression of functionally redundant Cbln1 did not compensate for a possible synapse-formation function of Cbln2 at CA1àsubiculum synapses. In exploring the generality of these findings, we examined the prefrontal cortex where Cbln2 was recently implicated in spinogenesis, and the cerebellum where Cbln1 is known to regulate parallel-fiber synapses. In the prefrontal cortex, Nrxn1SS4+-Cbln2 signaling selectively controlled NMDA-receptors without affecting spine or synapse numbers, whereas Nrxn3SS4+-Cbln2 signaling had no apparent role. In the cerebellum, conversely, Nrxn3SS4+-Cbln1 signaling regulated AMPA-receptors, whereas now Nrxn1SS4+-Cbln1 signaling had no manifest effect. Thus, Nrxn1SS4+- and Nrxn3SS4+-Cbln1/2 signaling complexes differentially control NMDA- and AMPA-receptors in different synapses in diverse neural circuits without regulating synapse or spine formation.

    1. Cell Biology
    2. Developmental Biology
    Aaron ZA Schwartz, Nikita Tsyba ... Jeremy Nance
    Research Article

    Mitochondria harbor an independent genome, called mitochondrial DNA (mtDNA), which contains essential metabolic genes. Although mtDNA mutations occur at high frequency, they are inherited infrequently, indicating that germline mechanisms limit their accumulation. To determine how germline mtDNA is regulated, we examined the control of mtDNA quantity and quality in C. elegans primordial germ cells (PGCs). We show that PGCs combine strategies to generate a low point in mtDNA number by segregating mitochondria into lobe-like protrusions that are cannibalized by adjacent cells, and by concurrently eliminating mitochondria through autophagy, reducing overall mtDNA content twofold. As PGCs exit quiescence and divide, mtDNAs replicate to maintain a set point of ~200 mtDNAs per germline stem cell. Whereas cannibalism and autophagy eliminate mtDNAs stochastically, we show that the kinase PTEN-induced kinase 1 (PINK1), operating independently of Parkin and autophagy, preferentially reduces the fraction of mutant mtDNAs. Thus, PGCs employ parallel mechanisms to control both the quantity and quality of the founding population of germline mtDNAs.