Neuronal temperature perception induces specific defenses that enable C. elegans to cope with the enhanced reactivity of hydrogen peroxide at high temperature

  1. Francesco A Servello
  2. Rute Fernandes
  3. Matthias Eder
  4. Nathan Harris
  5. Olivier M F Martin
  6. Natasha Oswal
  7. Anders Lindberg
  8. Nohelly Derosiers
  9. Piali Sengupta
  10. Nicholas Stroustrup
  11. Javier Apfeld  Is a corresponding author
  1. Northeastern University, United States
  2. Centre for Genomic Regulation, Spain
  3. Brandeis University, United States

Abstract

Hydrogen peroxide is the most common reactive chemical that organisms face on the microbial battlefield. The rate with which hydrogen peroxide damages biomolecules required for life increases with temperature, yet little is known about how organisms cope with this temperature-dependent threat. Here, we show that Caenorhabditis elegans nematodes use temperature information perceived by sensory neurons to cope with the temperature-dependent threat of hydrogen peroxide produced by the pathogenic bacterium Enterococcus faecium. These nematodes preemptively induce the expression of specific hydrogen peroxide defenses in response to perception of high temperature by a pair of sensory neurons. These neurons communicate temperature information to target tissues expressing those defenses via an insulin/IGF1 hormone. This is the first example of a multicellular organism inducing their defenses to a chemical when they sense an inherent enhancer of the reactivity of that chemical.

Data availability

Raw mRNA-seq read files are available under Bioproject PRJNA822361 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA822361).All data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Francesco A Servello

    Biology Department, Northeastern University, Boston, United States
    Competing interests
    No competing interests declared.
  2. Rute Fernandes

    Systems Biology Programme, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    No competing interests declared.
  3. Matthias Eder

    Systems Biology Programme, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    No competing interests declared.
  4. Nathan Harris

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7856-520X
  5. Olivier M F Martin

    Systems Biology Programme, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    No competing interests declared.
  6. Natasha Oswal

    Systems Biology Programme, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1478-8356
  7. Anders Lindberg

    Biology Department, Northeastern University, Boston, United States
    Competing interests
    No competing interests declared.
  8. Nohelly Derosiers

    Biology Department, Northeastern University, Boston, United States
    Competing interests
    No competing interests declared.
  9. Piali Sengupta

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    Piali Sengupta, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7468-0035
  10. Nicholas Stroustrup

    Systems Biology Programme, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9530-7301
  11. Javier Apfeld

    Biology Department,, Northeastern University, Boston, United States
    For correspondence
    j.apfeld@northeastern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9897-5671

Funding

National Science Foundation (CAREER 1750065)

  • Javier Apfeld

The Spanish Ministry of Economy, Industry and Competitiveness MEIC Excelencia award (PID2020-115189GB-I00)

  • Nicholas Stroustrup

Northeastern University (Tier 1)

  • Javier Apfeld

CERCA Programme/Generalitat de Catalunya

  • Nicholas Stroustrup

The Centro de Excelencia Severo Ochoa (CEX2020-001049-S,MCIN/AEI /10.13039/501100011033)

  • Nicholas Stroustrup

European Research Council (852201)

  • Nicholas Stroustrup

National Institutes of Health (R35 GM122463)

  • Piali Sengupta

National Institutes of Health (F32 NS112453)

  • Nathan Harris

National Science Foundation (1757443)

  • Nohelly Derosiers

The Spanish Ministry of the Economy, Industry and Competitiveness to the EMBL partnership

  • Nicholas Stroustrup

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Douglas Portman, University of Rochester, United States

Version history

  1. Preprint posted: March 23, 2022 (view preprint)
  2. Received: March 25, 2022
  3. Accepted: October 12, 2022
  4. Accepted Manuscript published: October 13, 2022 (version 1)
  5. Version of Record published: November 4, 2022 (version 2)

Copyright

© 2022, Servello et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,338
    views
  • 230
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesco A Servello
  2. Rute Fernandes
  3. Matthias Eder
  4. Nathan Harris
  5. Olivier M F Martin
  6. Natasha Oswal
  7. Anders Lindberg
  8. Nohelly Derosiers
  9. Piali Sengupta
  10. Nicholas Stroustrup
  11. Javier Apfeld
(2022)
Neuronal temperature perception induces specific defenses that enable C. elegans to cope with the enhanced reactivity of hydrogen peroxide at high temperature
eLife 11:e78941.
https://doi.org/10.7554/eLife.78941

Share this article

https://doi.org/10.7554/eLife.78941

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.