Abstract

Background: HIV infection dysregulates the B cell compartment, affecting memory B cell formation and the antibody response to infection and vaccination. Understanding the B cell response to SARS-CoV-2 in people living with HIV (PLWH) may explain the increased morbidity, reduced vaccine efficacy, reduced clearance, and intra-host evolution of SARS-CoV-2 observed in some HIV-1 coinfections.

Methods: We compared B cell responses to COVID-19 in PLWH and HIV negative (HIV-ve) patients in a cohort recruited in Durban, South Africa, during the first pandemic wave in July 2020 using detailed flow cytometry phenotyping of longitudinal samples with markers of B cell maturation, homing and regulatory features.

Results: This revealed a coordinated B cell response to COVID-19 that differed significantly between HIV-ve and PLWH. Memory B cells in PLWH displayed evidence of reduced germinal center (GC) activity, homing capacity and class-switching responses, with increased PD-L1 expression, and decreased Tfh frequency. This was mirrored by increased extrafollicular (EF) activity, with dynamic changes in activated double negative (DN2) and activated naïve B cells, which correlated with anti-RBD-titres in these individuals. An elevated SARS-CoV-2 specific EF response in PLWH was confirmed using viral spike and RBD bait proteins.

Conclusions: Despite similar disease severity, these trends were highest in participants with uncontrolled HIV, implicating HIV in driving these changes. EF B cell responses are rapid but give rise to lower affinity antibodies, less durable long-term memory, and reduced capacity to adapt to new variants. Further work is needed to determine the long-term effects of HIV on SARS-CoV-2 immunity, particularly as new variants emerge.

Funding: This work was supported by a grant from the Wellcome Trust to the Africa Health Research Institute (Wellcome Trust Strategic Core Award [grant number 201433/Z/16/Z]). Additional funding was received from the South African Department of Science and Innovation through the National Research Foundation (South African Research Chairs Initiative, [grant number 64809]), and the Victor Daitz Foundation.

Data availability

All data generated or analyzed during this study are included in the manuscript and Source data 1.

Article and author information

Author details

  1. Robert Krause

    Africa Health Research Institute, Durban, South Africa
    For correspondence
    robert.krause@ahri.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1558-0397
  2. Jumari Snyman

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
  3. Hwa Shi-Hsia

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
  4. Daniel Muema

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
  5. Farina Karim

    School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9698-016X
  6. Yashica Ganga

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
  7. Abigail Ngoepe

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
  8. Yenzekile Zungu

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
  9. Inbal Gazy

    KwaZulu-Natal Research Innovation and Sequencing Platform, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    No competing interests declared.
  10. Mallory Bernstein

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
  11. Khadija Khan

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7565-7400
  12. Matilda Mazibuko

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
  13. Ntombifuthi Mthabela

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
  14. Dirhona Ramjit

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
  15. COMMIT-KZN Team

  16. Oliver Limbo

    International AIDS Vaccine Initiative, New York, United States
    Competing interests
    No competing interests declared.
  17. Joseph Jardine

    International AIDS Vaccine Initiative, New York, United States
    Competing interests
    No competing interests declared.
  18. Devin Sok

    International AIDS Vaccine Initiative, New York, United States
    Competing interests
    No competing interests declared.
  19. Ian A Wilson

    Scripps Research Institute, La Jolla, United States
    Competing interests
    No competing interests declared.
  20. Willem Hanekom

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
  21. Alex Sigal

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    Alex Sigal, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8571-2004
  22. Henrik Kløverpris

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
  23. Thumbi Ndung'u

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2962-3992
  24. Alasdair Leslie

    Africa Health Research Institute, Durban, South Africa
    Competing interests
    No competing interests declared.

Funding

Wellcome Trust (201433/Z/16/Z)

  • Alex Sigal

National Research Foundation (64809)

  • Alex Sigal

Victor Daitz Foundation

  • Alex Sigal

Max Planck Institute for Infection Biology (open access funding)

  • Alex Sigal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study protocol was approved by the University of KwaZulu-Natal Biomedical Research Ethics Committee (approval BREC/00001275/2020). Written informed consent was obtained for all enrolled participants.

Copyright

© 2022, Krause et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 866
    views
  • 187
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robert Krause
  2. Jumari Snyman
  3. Hwa Shi-Hsia
  4. Daniel Muema
  5. Farina Karim
  6. Yashica Ganga
  7. Abigail Ngoepe
  8. Yenzekile Zungu
  9. Inbal Gazy
  10. Mallory Bernstein
  11. Khadija Khan
  12. Matilda Mazibuko
  13. Ntombifuthi Mthabela
  14. Dirhona Ramjit
  15. COMMIT-KZN Team
  16. Oliver Limbo
  17. Joseph Jardine
  18. Devin Sok
  19. Ian A Wilson
  20. Willem Hanekom
  21. Alex Sigal
  22. Henrik Kløverpris
  23. Thumbi Ndung'u
  24. Alasdair Leslie
(2022)
HIV skews the SARS-CoV-2 B cell response toward an extrafollicular maturation pathway
eLife 11:e79924.
https://doi.org/10.7554/eLife.79924

Share this article

https://doi.org/10.7554/eLife.79924

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Rashmi Sukumaran, Achuthsankar S Nair, Moinak Banerjee
    Research Article

    Burden of stroke differs by region, which could be attributed to differences in comorbid conditions and ethnicity. Genomewide variation acts as a proxy marker for ethnicity, and comorbid conditions. We present an integrated approach to understand this variation by considering prevalence and mortality rates of stroke and its comorbid risk for 204 countries from 2009 to 2019, and Genome-wide association studies (GWAS) risk variant for all these conditions. Global and regional trend analysis of rates using linear regression, correlation, and proportion analysis, signifies ethnogeographic differences. Interestingly, the comorbid conditions that act as risk drivers for stroke differed by regions, with more of metabolic risk in America and Europe, in contrast to high systolic blood pressure in Asian and African regions. GWAS risk loci of stroke and its comorbid conditions indicate distinct population stratification for each of these conditions, signifying for population-specific risk. Unique and shared genetic risk variants for stroke, and its comorbid and followed up with ethnic-specific variation can help in determining regional risk drivers for stroke. Unique ethnic-specific risk variants and their distinct patterns of linkage disequilibrium further uncover the drivers for phenotypic variation. Therefore, identifying population- and comorbidity-specific risk variants might help in defining the threshold for risk, and aid in developing population-specific prevention strategies for stroke.

    1. Epidemiology and Global Health
    2. Evolutionary Biology
    Renan Maestri, Benoît Perez-Lamarque ... Hélène Morlon
    Research Article

    Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus–host codiversification have been largely over-estimated.