Cardiovascular disease and subsequent risk of psychiatric disorders: a nationwide sibling-controlled study

  1. Qing Shen  Is a corresponding author
  2. Huan Song
  3. Thor Aspelund
  4. Jingru Yu
  5. Donghao Lu
  6. Jóhanna Jakobsdóttir
  7. Jacob Bergstedt
  8. Lu Yi
  9. Patrick Sullivan
  10. Arvid Sjölander
  11. Weimin Ye
  12. Katja Fall
  13. Fang Fang
  14. Unnur Valdimarsdóttir
  1. Karolinska Institute, Sweden
  2. Sichuan University, China
  3. University of Iceland, Iceland
  4. University of North Carolina at Chapel Hill, United States
  5. Örebro University, Sweden

Abstract

Background: The association between cardiovascular disease (CVD) and selected psychiatric disorders has frequently been suggested while the potential role of familial factors and comorbidities in such association has rarely been investigated.

Methods: We identified 869 056 patients newly diagnosed with CVD from 1987 to 2016 in Sweden with no history of psychiatric disorders, and 910 178 full siblings of these patients as well as 10 individually age- and sex-matched unrelated population controls (N=8 690 560). Adjusting for multiple comorbid conditions, we used flexible parametric models and Cox models to estimate the association of CVD with risk of all subsequent psychiatric disorders, comparing rates of first incident psychiatric disorder among CVD patients with rates among unaffected full siblings and population controls.

Results: The median age at diagnosis was 60 years for patients with CVD and 59.2% were male. During up to thirty years of follow-up, the crude incidence rates of psychiatric disorder were 7.1, 4.6 and 4.0 per 1000 person-years for patients with CVD, their siblings and population controls. In the sibling comparison, we observed an increased risk of psychiatric disorder during the first year after CVD diagnosis (hazard ratio [HR], 2.74; 95% confidence interval [CI], 2.62-2.87) and thereafter (1.45; 95% CI, 1.42-1.48). Increased risks were observed for all types of psychiatric disorders and among all diagnoses of CVD. We observed similar associations in the population comparison. CVD patients who developed a comorbid psychiatric disorder during the first year after diagnosis were at elevated risk of subsequent CVD death compared to patients without such comorbidity (HR 1.55; 95% CI 1.44-1.67).

Conclusions: Patients diagnosed with CVD are at an elevated risk for subsequent psychiatric disorders independent of shared familial factors and comorbid conditions. Comorbid psychiatric disorders in patients with CVD are associated with higher risk of cardiovascular mortality suggesting that surveillance and treatment of psychiatric comorbidities should be considered as an integral part of clinical management of newly diagnosed CVD patients.

Funding: This work was supported by the EU Horizon 2020 Research and Innovation Action Grant (CoMorMent, grant no. 847776 to UV, PFS and FF), Grant of Excellence, Icelandic Research Fund (grant no. 163362-051 to UV), ERC Consolidator Grant (StressGene, grant no: 726413 to UV), Swedish Research Council (grant no. D0886501 to PFS) and US NIMH R01 MH123724 (to PFS).

Data availability

Data analyses were performed in STATA 17.0 (StataCorp LP). STATA script used in the primary analyses has been made available as supplementary appendix. Aggregated data used for generating figures are available in supplementary appendix. The original data used in this study are owned by the Swedish National Board of Health and Welfare and Statistics Sweden. The authors are not able to make the dataset publicly available according to the Public Access to Information and Secrecy Act in Sweden. Any researchers (including international researchers) interested in accessing the data can send request to the authorities for data application by: 1) apply for ethical approval from local ethical review board; 2) contact the Swedish National Board of Health and Welfare (https://bestalladata.socialstyrelsen.se/, email: registerservice@socialstyrelsen.se) and/or Statistics Sweden (https://www.scb.se/vara-tjanster/bestall-data-och-statistik/, email: scb@scb.se) with the ethical approval and submit a formal application for access to register data. The same contacts can be used for detailed information about how to apply for access to register data for research purposes."

Article and author information

Author details

  1. Qing Shen

    Unit of Integrative Epidemiology, Karolinska Institute, Stockholm, Sweden
    For correspondence
    qing.shen@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7214-4797
  2. Huan Song

    West China Biomedical Big Data Center, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Thor Aspelund

    Faculty of Medicine, University of Iceland, Reykjavík, Iceland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7998-5433
  4. Jingru Yu

    Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Donghao Lu

    Unit of Integrative Epidemiology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4186-8661
  6. Jóhanna Jakobsdóttir

    Faculty of Medicine, University of Iceland, Reykjavík, Iceland
    Competing interests
    The authors declare that no competing interests exist.
  7. Jacob Bergstedt

    Unit of Integrative Epidemiology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Lu Yi

    Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Patrick Sullivan

    Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Arvid Sjölander

    Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  11. Weimin Ye

    Unit of Integrative Epidemiology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Katja Fall

    Clinical Epidemiology and Biostatistics, Örebro University, Örebro, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  13. Fang Fang

    Unit of Integrative Epidemiology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3310-6456
  14. Unnur Valdimarsdóttir

    Faculty of Medicine, University of Iceland, Reykjavik, Iceland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5382-946X

Funding

EU Horizon 2020 Research and Innovation Action Grant (CoMorMent,847776)

  • Unnur Valdimarsdóttir

EU Horizon 2020 Research and Innovation Action Grant (CoMorMent,847776)

  • Fang Fang

EU Horizon 2020 Research and Innovation Action Grant (CoMorMent,847776)

  • Patrick Sullivan

Grant of Excellence, Icelandic Research Fund (163362-51)

  • Unnur Valdimarsdóttir

ERC Consolidator Grant (StressGene,726413)

  • Unnur Valdimarsdóttir

Swedish Research Council (D0886501)

  • Patrick Sullivan

US NIMH R01 (MH123724)

  • Patrick Sullivan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the Ethical Vetting Board in Stockholm, Sweden (DNRs 2012/1814-31/4 and 2015/1062-32). Informed consent to each participant was waived by Swedish law in nationwide registry data.

Copyright

© 2022, Shen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,131
    views
  • 191
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qing Shen
  2. Huan Song
  3. Thor Aspelund
  4. Jingru Yu
  5. Donghao Lu
  6. Jóhanna Jakobsdóttir
  7. Jacob Bergstedt
  8. Lu Yi
  9. Patrick Sullivan
  10. Arvid Sjölander
  11. Weimin Ye
  12. Katja Fall
  13. Fang Fang
  14. Unnur Valdimarsdóttir
(2022)
Cardiovascular disease and subsequent risk of psychiatric disorders: a nationwide sibling-controlled study
eLife 11:e80143.
https://doi.org/10.7554/eLife.80143

Share this article

https://doi.org/10.7554/eLife.80143

Further reading

    1. Epidemiology and Global Health
    Yuan Zhang, Dan Tang ... Xing Zhao
    Research Article

    Background:

    Biological aging exhibits heterogeneity across multi-organ systems. However, it remains unclear how is lifestyle associated with overall and organ-specific aging and which factors contribute most in Southwest China.

    Methods:

    This study involved 8396 participants who completed two surveys from the China Multi-Ethnic Cohort (CMEC) study. The healthy lifestyle index (HLI) was developed using five lifestyle factors: smoking, alcohol, diet, exercise, and sleep. The comprehensive and organ-specific biological ages (BAs) were calculated using the Klemera–Doubal method based on longitudinal clinical laboratory measurements, and validation were conducted to select BA reflecting related diseases. Fixed effects model was used to examine the associations between HLI or its components and the acceleration of validated BAs. We further evaluated the relative contribution of lifestyle components to comprehension and organ systems BAs using quantile G-computation.

    Results:

    About two-thirds of participants changed HLI scores between surveys. After validation, three organ-specific BAs (the cardiopulmonary, metabolic, and liver BAs) were identified as reflective of specific diseases and included in further analyses with the comprehensive BA. The health alterations in HLI showed a protective association with the acceleration of all BAs, with a mean shift of –0.19 (95% CI −0.34, –0.03) in the comprehensive BA acceleration. Diet and smoking were the major contributors to overall negative associations of five lifestyle factors, with the comprehensive BA and metabolic BA accounting for 24% and 55% respectively.

    Conclusions:

    Healthy lifestyle changes were inversely related to comprehensive and organ-specific biological aging in Southwest China, with diet and smoking contributing most to comprehensive and metabolic BA separately. Our findings highlight the potential of lifestyle interventions to decelerate aging and identify intervention targets to limit organ-specific aging in less-developed regions.

    Funding:

    This work was primarily supported by the National Natural Science Foundation of China (Grant No. 82273740) and Sichuan Science and Technology Program (Natural Science Foundation of Sichuan Province, Grant No. 2024NSFSC0552). The CMEC study was funded by the National Key Research and Development Program of China (Grant No. 2017YFC0907305, 2017YFC0907300). The sponsors had no role in the design, analysis, interpretation, or writing of this article.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Bo Zheng, Bronner P Gonçalves ... Caoyi Xue
    Research Article

    Background:

    In many settings, a large fraction of the population has both been vaccinated against and infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, quantifying the protection provided by post-infection vaccination has become critical for policy. We aimed to estimate the protective effect against SARS-CoV-2 reinfection of an additional vaccine dose after an initial Omicron variant infection.

    Methods:

    We report a retrospective, population-based cohort study performed in Shanghai, China, using electronic databases with information on SARS-CoV-2 infections and vaccination history. We compared reinfection incidence by post-infection vaccination status in individuals initially infected during the April–May 2022 Omicron variant surge in Shanghai and who had been vaccinated before that period. Cox models were fit to estimate adjusted hazard ratios (aHRs).

    Results:

    275,896 individuals were diagnosed with real-time polymerase chain reaction-confirmed SARS-CoV-2 infection in April–May 2022; 199,312/275,896 were included in analyses on the effect of a post-infection vaccine dose. Post-infection vaccination provided protection against reinfection (aHR 0.82; 95% confidence interval 0.79–0.85). For patients who had received one, two, or three vaccine doses before their first infection, hazard ratios for the post-infection vaccination effect were 0.84 (0.76–0.93), 0.87 (0.83–0.90), and 0.96 (0.74–1.23), respectively. Post-infection vaccination within 30 and 90 days before the second Omicron wave provided different degrees of protection (in aHR): 0.51 (0.44–0.58) and 0.67 (0.61–0.74), respectively. Moreover, for all vaccine types, but to different extents, a post-infection dose given to individuals who were fully vaccinated before first infection was protective.

    Conclusions:

    In previously vaccinated and infected individuals, an additional vaccine dose provided protection against Omicron variant reinfection. These observations will inform future policy decisions on COVID-19 vaccination in China and other countries.

    Funding:

    This study was funded the Key Discipline Program of Pudong New Area Health System (PWZxk2022-25), the Development and Application of Intelligent Epidemic Surveillance and AI Analysis System (21002411400), the Shanghai Public Health System Construction (GWVI-11.2-XD08), the Shanghai Health Commission Key Disciplines (GWVI-11.1-02), the Shanghai Health Commission Clinical Research Program (20214Y0020), the Shanghai Natural Science Foundation (22ZR1414600), and the Shanghai Young Health Talents Program (2022YQ076).