Discovery of a new class of reversible TEA-domain transcription factor inhibitors with a novel binding mode

  1. Lu Hu  Is a corresponding author
  2. Yang Sun
  3. Shun Liu
  4. Hannah Erb
  5. Alka Singh
  6. Junhao Mao
  7. Xuelian Luo  Is a corresponding author
  8. Xu Wu  Is a corresponding author
  1. Massachusetts General Hospital, United States
  2. The University of Texas Southwestern Medical Centerh, United States
  3. University of Massachusetts Medical School, United States

Abstract

The TEA domain (TEAD) transcription factor forms a transcription co-activation complex with the key downstream effector of the Hippo pathway, YAP/TAZ. TEAD-YAP controls the expression of Hippo-responsive genes involved in cell proliferation, development, and tumorigenesis. Hyperactivation of TEAD-YAP activities is observed in many human cancers, and is associated with cancer cell proliferation, survival and immune evasion. Therefore, targeting the TEAD-YAP complex has emerged as an attractive therapeutic approach. We previously reported that the mammalian TEAD transcription factors (TEAD1-4) possess auto-palmitoylation activities and contain an evolutionarily conserved palmitate-binding pocket (PBP), which allows small molecule modulation. Since then, several reversible and irreversible inhibitors have been reported by binding to PBP. Here, we report a new class of TEAD inhibitors with a novel binding mode. Representative analog TM2 shows potent inhibition of TEAD auto-palmitoylation both in vitro and in cells. Surprisingly, the co-crystal structure of the human TEAD2 YAP-binding domain (YBD) in complex with TM2 reveals that TM2 adopts an unexpected binding mode by occupying not only the hydrophobic PBP, but also a new side binding pocket formed by hydrophilic residues. RNA-seq analysis shows that TM2 potently and specifically suppresses TEAD-YAP transcriptional activities. Consistently, TM2 exhibits strong anti-proliferation effects as a single agent or in combination with a MEK inhibitor in YAP-dependent cancer cells. These findings establish TM2 as a promising small molecule inhibitor against TEAD-YAP activities and provide new insights for designing novel TEAD inhibitors with enhanced selectivity and potency.

Data availability

The crystal structure of TEAD2 YBD in complex with TM2 has been deposited in the Protein Data Bank with accession codes 8CUH. The raw RNA-seq data of NCI-H226 treated with TM2, K975 and VT103 has been deposited in NCBI GEO and is accessible at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215114.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Lu Hu

    Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, United States
    For correspondence
    LHU8@mgh.harvard.edu
    Competing interests
    Lu Hu, is an inventor of a patent application covering TM2 and analogues as novel TEAD inhibitors..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1594-8828
  2. Yang Sun

    Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    No competing interests declared.
  3. Shun Liu

    Department of Pharmacology, The University of Texas Southwestern Medical Centerh, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1766-2057
  4. Hannah Erb

    Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    No competing interests declared.
  5. Alka Singh

    Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  6. Junhao Mao

    Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1980-1177
  7. Xuelian Luo

    Department of Pharmacology, The University of Texas Southwestern Medical Centerh, Dallas, United States
    For correspondence
    xuelian.luo@utsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5058-4695
  8. Xu Wu

    Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, United States
    For correspondence
    xwu@cbrc2.mgh.harvard.edu
    Competing interests
    Xu Wu, is an inventor of a patent application covering TM2 and analogues as novel TEAD inhibitors. Dr. Xu Wu has a financial interest in Tasca Therapuetics, which is developing small molecule modulators of TEAD palmitoylation and transcription factors. Dr. Wu's interests were reviewed and are managed by Mass General Hospital, and Mass General Brigham in accordance with their conflict of interest policies..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1624-0143

Funding

National Cancer Institute (R01CA219814)

  • Xu Wu

National Cancer Institute (R01CA238270)

  • Xu Wu

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK127180)

  • Junhao Mao

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK127207)

  • Junhao Mao

Welch Foundation (I-1932)

  • Xuelian Luo

Antidote Health Foundation for the cure of cancer (postdoc fellowship)

  • Lu Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,557
    views
  • 541
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lu Hu
  2. Yang Sun
  3. Shun Liu
  4. Hannah Erb
  5. Alka Singh
  6. Junhao Mao
  7. Xuelian Luo
  8. Xu Wu
(2022)
Discovery of a new class of reversible TEA-domain transcription factor inhibitors with a novel binding mode
eLife 11:e80210.
https://doi.org/10.7554/eLife.80210

Share this article

https://doi.org/10.7554/eLife.80210

Further reading

    1. Biochemistry and Chemical Biology
    Shraddha KC, Kenny H Nguyen ... Thomas C Boothby
    Research Article

    The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.