Recombinant origin and interspecies transmission of a HERV-K(HML-2)-related primate retrovirus with a novel RNA transport element

Abstract

HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact ORFs, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3' LTR, derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8 derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec-RcRE export system was replaced by a CTE mechanism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files, or are re-analyses of publically available data; source data files have been provided for Figures 1-5 and 7-8.

The following previously published data sets were used

Article and author information

Author details

  1. Zachary H Williams

    Department of Biology, Boston College, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alvaro Dafonte Imedio

    Department of Biology, Boston College, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lea Gaucherand

    Molecular Microbiology Program, Tufts University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4477-1021
  4. Derek C Lee

    Department of Biology, Boston College, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Salwa Mohd Mostafa

    Department of Developmental, Molecular and Chemical Biology, Tufts University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. James P Phelan

    Molecular Microbiology Program, Tufts University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. John M Coffin

    Department of Molecular Biology and Microbiology, Tufts University, Medford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Welkin E Johnson

    Department of Biology, Boston College, Chestnut Hill, United States
    For correspondence
    welkin.johnson@bc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5991-5414

Funding

National Institute of Allergy and Infectious Diseases (AI083118)

  • Zachary H Williams
  • Alvaro Dafonte Imedio
  • Derek C Lee

National Institute of Allergy and Infectious Diseases (AI136074)

  • Zachary H Williams
  • Alvaro Dafonte Imedio
  • Derek C Lee

National Cancer Institute (R35CA200421)

  • Zachary H Williams
  • Lea Gaucherand
  • Salwa Mohd Mostafa
  • James P Phelan
  • John M Coffin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Williams et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 728
    views
  • 109
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zachary H Williams
  2. Alvaro Dafonte Imedio
  3. Lea Gaucherand
  4. Derek C Lee
  5. Salwa Mohd Mostafa
  6. James P Phelan
  7. John M Coffin
  8. Welkin E Johnson
(2024)
Recombinant origin and interspecies transmission of a HERV-K(HML-2)-related primate retrovirus with a novel RNA transport element
eLife 13:e80216.
https://doi.org/10.7554/eLife.80216

Share this article

https://doi.org/10.7554/eLife.80216

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.