Identification of epigenetic modulators as determinants of nuclear size and shape

  1. Andria C Schibler
  2. Predrag Jevtic
  3. Gianluca Pegoraro
  4. Daniel L Levy  Is a corresponding author
  5. Tom Misteli  Is a corresponding author
  1. National Cancer Institute, United States
  2. University of Wyoming, United States

Abstract

The shape and size of the human cell nucleus is highly variable amongst cell types and tissues. Changes in nuclear morphology are associated with disease, including cancer, as well as with premature and normal aging. Despite the very fundamental nature of nuclear morphology, the cellular factors that determine nuclear shape and size are not well understood. To identify regulators of nuclear architecture in a systematic and unbiased fashion, we performed a high-throughput imaging-based siRNA screen targeting 867 nuclear proteins including chromatin-associated proteins, epigenetic regulators, and nuclear envelope components. Using multiple morphometric parameters and eliminating cell cycle effectors, we identified a set of novel determinants of nuclear size and shape. Interestingly, most identified factors altered nuclear morphology without affecting the levels of lamin proteins, which are known prominent regulators of nuclear shape. In contrast, a major group of nuclear shape regulators were modifiers of repressive heterochromatin. Biochemical and molecular analysis uncovered a direct physical interaction of histone H3 with lamin A mediated via combinatorial histone modifications. Furthermore, disease-causing lamin A mutations that result in disruption of nuclear shape inhibited lamin A-histone H3 interactions. Finally, oncogenic histone H3.3 mutants defective for H3K27 methylation resulted in nuclear morphology abnormalities. Altogether, our results represent a systematic exploration of cellular factors involved in determining nuclear morphology and they identify the interaction of lamin A with histone H3 as an important contributor to nuclear morphology in human cells.

Data availability

All data generated are included in the manuscript.

Article and author information

Author details

  1. Andria C Schibler

    National Cancer Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Predrag Jevtic

    Department of Molecular Biology, University of Wyoming, Laramie, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3978-5311
  3. Gianluca Pegoraro

    National Cancer Institute, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel L Levy

    Department of Molecular Biology, University of Wyoming, Laramie, United States
    For correspondence
    dlevy1@uwyo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7853-3275
  5. Tom Misteli

    National Cancer Institute, Bethesda, United States
    For correspondence
    mistelit@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3530-3020

Funding

National Institutes of Health (NIH 1-ZIA-BC010309-23)

  • Tom Misteli

National Institutes of Health (NIH 1-ZIC-BC011567-08)

  • Gianluca Pegoraro

National Institutes of Health (NIH R35GM134885)

  • Daniel L Levy

National Institutes of Health (NIH P20GM103432)

  • Daniel L Levy

USDA National Institute of Food and Agriculture (Hatch project #1012152)

  • Daniel L Levy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Megan C King, Yale School of Medicine, United States

Publication history

  1. Received: May 29, 2022
  2. Accepted: May 4, 2023
  3. Accepted Manuscript published: May 23, 2023 (version 1)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 297
    Page views
  • 137
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andria C Schibler
  2. Predrag Jevtic
  3. Gianluca Pegoraro
  4. Daniel L Levy
  5. Tom Misteli
(2023)
Identification of epigenetic modulators as determinants of nuclear size and shape
eLife 12:e80653.
https://doi.org/10.7554/eLife.80653

Further reading

    1. Cell Biology
    Emmeline Marchal-Duval, Méline Homps-Legrand ... Arnaud A Mailleux
    Research Article

    Matrix remodeling is a salient feature of idiopathic pulmonary fibrosis (IPF). Targeting cells driving matrix remodeling could be a promising avenue for IPF treatment. Analysis of transcriptomic database identified the mesenchymal transcription factor PRRX1 as upregulated in IPF. PRRX1, strongly expressed by lung fibroblasts, was regulated by a TGF-b/PGE2 balance in vitro in control and IPF human lung fibroblasts, while IPF fibroblast-derived matrix increased PRRX1 expression in a PDGFR dependent manner in control ones. PRRX1 inhibition decreased human lung fibroblast proliferation by downregulating the expression of S phase cyclins. PRRX1 inhibition also impacted TGF-β driven myofibroblastic differentiation by inhibiting SMAD2/3 phosphorylation through phosphatase PPM1A upregulation and TGFBR2 downregulation, leading to TGF-β response global decrease. Finally, targeted inhibition of Prrx1 attenuated fibrotic remodeling in vivo with intra-tracheal antisense oligonucleotides in bleomycin mouse model of lung fibrosis and ex vivo using human and mouse precision-cut lung slices. Our results identified PRRX1 as a key mesenchymal transcription factor during lung fibrogenesis.

    1. Cell Biology
    2. Neuroscience
    Meghan E Wynne, Oluwaseun Ogunbona ... Victor Faundez
    Research Article Updated

    Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer’s disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.