Background: Procalcitonin (PCT) has been used to guide antibiotic therapy in bacterial infections. We aimed to determine the role of PCT in decreasing the duration of empiric antibiotic therapy among cancer patients admitted with COVID-19.
Methods: This retrospective study included cancer patients admitted to our institution for COVID-19 between March 1, 2020, and June 28, 2021, with a PCT test done within 72 hours after admission. Patients were divided into 2 groups: PCT <0.25 ng/ml and PCT ≥0.25 ng/ml. We assessed pertinent cultures, antibacterial use, and duration of empiric antibacterial therapy.
Results: The study included 530 patients (median age, 62 years [range, 13-91]). All the patients had ≥1 culture test within 7 days following admission. Patients with PCT <0.25 ng/ml were less likely to have a positive culture than were those with PCT ≥0.25 ng/ml (6% [20/358] vs 17% [30/172]; p<0.0001). PCT <0.25 ng/ml had a high negative predictive value for bacteremia and 30-day mortality. Patients with PCT <0.25 ng/ml were less likely to receive intravenous (IV) antibiotics for >72 hours than were patients with PCT ≥0.25 ng/ml (45% [162/358] vs 69% [119/172]; p<0.0001). Among patients with PCT <0.25 ng/ml and negative cultures, 30-day mortality was similar between those who received IV antibiotics for ≥72 hours and those who received IV antibiotics for shorter durations (2% [2/111] vs 3% [5/176], p=0.71).
Conclusions: Among cancer patients with COVID-19, PCT level <0.25 ng/ml is associated with lower likelihood of bacterial co-infection and greater likelihood of a shorter antibiotic course. In patients with PCT level <0.25 ng/ml and negative cultures, an antibiotic course of > 72 hours may not be necessary. PCT could be useful in enhancing antimicrobial stewardship in cancer patients with COVID-19.
Funding: This research was supported by the National Institutes of Health/National Cancer Institute under award number P30CA016672, which supports MD Anderson Cancer Center's Clinical Trials Office.
These are human subjects and we are unable to share data that contain patients' health information because of IRB restriction. We do not have the patients' consent to share their data.The study protocol, statistical analysis plan, lists of deidentified individual data, generated tables and figures will be made available upon request by qualified scientific and medical researchers for legitimate research purposes. Requests should be sent to achaftari@mdanderson.org and yijiang@mdanderson.org. Data will be available on request for 6 months from the date of publication. Investigators are invited to submit study proposal requests detailing research questions and hypotheses in order to receive access to these data.The software we used for data analysis is SAS version 9.3 (SAS Institute Inc., Cary, NC), and we have provided this information in Statistical analysis section of the manuscript.
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Human subjects: Our study was approved by the Institutional Review Board of MD Anderson Cancer Center, and awaiver of informed consent was obtained.
© 2022, Dagher et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
eLife has published the following articles on SARS-CoV-2 and COVID-19.
Why does a normal cell possibly harboring genetic mutations in oncogene or tumor suppressor genes becomes malignant and develops a tumor is a subject of intense debate. Various theories have been proposed but their experimental test has been hampered by the unpredictable and improbable malignant transformation of single cells. Here, using an optogenetic approach we permanently turn on an oncogene (KRASG12V) in a single cell of a zebrafish brain that, only in synergy with the transient co-activation of a reprogramming factor (VENTX/NANOG/OCT4), undergoes a deterministic malignant transition and robustly and reproducibly develops within 6 days into a full-blown tumor. The controlled way in which a single cell can thus be manipulated to give rise to cancer lends support to the ‘ground state theory of cancer initiation’ through ‘short-range dispersal’ of the first malignant cells preceding tumor growth.