Procalcitonin for antimicrobial stewardship among cancer patients admitted with COVID-19
Abstract
Background: Procalcitonin (PCT) has been used to guide antibiotic therapy in bacterial infections. We aimed to determine the role of PCT in decreasing the duration of empiric antibiotic therapy among cancer patients admitted with COVID-19.
Methods: This retrospective study included cancer patients admitted to our institution for COVID-19 between March 1, 2020, and June 28, 2021, with a PCT test done within 72 hours after admission. Patients were divided into 2 groups: PCT <0.25 ng/ml and PCT ≥0.25 ng/ml. We assessed pertinent cultures, antibacterial use, and duration of empiric antibacterial therapy.
Results: The study included 530 patients (median age, 62 years [range, 13-91]). All the patients had ≥1 culture test within 7 days following admission. Patients with PCT <0.25 ng/ml were less likely to have a positive culture than were those with PCT ≥0.25 ng/ml (6% [20/358] vs 17% [30/172]; p<0.0001). PCT <0.25 ng/ml had a high negative predictive value for bacteremia and 30-day mortality. Patients with PCT <0.25 ng/ml were less likely to receive intravenous (IV) antibiotics for >72 hours than were patients with PCT ≥0.25 ng/ml (45% [162/358] vs 69% [119/172]; p<0.0001). Among patients with PCT <0.25 ng/ml and negative cultures, 30-day mortality was similar between those who received IV antibiotics for ≥72 hours and those who received IV antibiotics for shorter durations (2% [2/111] vs 3% [5/176], p=0.71).
Conclusions: Among cancer patients with COVID-19, PCT level <0.25 ng/ml is associated with lower likelihood of bacterial co-infection and greater likelihood of a shorter antibiotic course. In patients with PCT level <0.25 ng/ml and negative cultures, an antibiotic course of > 72 hours may not be necessary. PCT could be useful in enhancing antimicrobial stewardship in cancer patients with COVID-19.
Funding: This research was supported by the National Institutes of Health/National Cancer Institute under award number P30CA016672, which supports MD Anderson Cancer Center's Clinical Trials Office.
Data availability
These are human subjects and we are unable to share data that contain patients' health information because of IRB restriction. We do not have the patients' consent to share their data.The study protocol, statistical analysis plan, lists of deidentified individual data, generated tables and figures will be made available upon request by qualified scientific and medical researchers for legitimate research purposes. Requests should be sent to achaftari@mdanderson.org and yijiang@mdanderson.org. Data will be available on request for 6 months from the date of publication. Investigators are invited to submit study proposal requests detailing research questions and hypotheses in order to receive access to these data.The software we used for data analysis is SAS version 9.3 (SAS Institute Inc., Cary, NC), and we have provided this information in Statistical analysis section of the manuscript.
Article and author information
Author details
Funding
National institutes of health/National cancer institute
- Issam I Raad
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Our study was approved by the Institutional Review Board of MD Anderson Cancer Center, and awaiver of informed consent was obtained.
Copyright
© 2022, Dagher et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 388
- views
-
- 65
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
- Medicine
- Microbiology and Infectious Disease
eLife has published the following articles on SARS-CoV-2 and COVID-19.
-
- Cancer Biology
Mutational profiles of myelodysplastic syndromes (MDS) have established that a relatively small number of genetic aberrations, including SF3B1 and SRSF2 spliceosome mutations, lead to specific phenotypes and prognostic subgrouping. We performed a multi-omics factor analysis (MOFA) on two published MDS cohorts of bone marrow mononuclear cells (BMMNCs) and CD34 + cells with three data modalities (clinical, genotype, and transcriptomics). Seven different views, including immune profile, inflammation/aging, retrotransposon (RTE) expression, and cell-type composition, were derived from these modalities to identify the latent factors with significant impact on MDS prognosis. SF3B1 was the only mutation among 13 mutations in the BMMNC cohort, indicating a significant association with high inflammation. This trend was also observed to a lesser extent in the CD34 + cohort. Interestingly, the MOFA factor representing the inflammation shows a good prognosis for MDS patients with high inflammation. In contrast, SRSF2 mutant cases show a granulocyte-monocyte progenitor (GMP) pattern and high levels of senescence, immunosenescence, and malignant myeloid cells, consistent with their poor prognosis. Furthermore, MOFA identified RTE expression as a risk factor for MDS. This work elucidates the efficacy of our integrative approach to assess the MDS risk that goes beyond all the scoring systems described thus far for MDS.