Transcriptional drifts associated with environmental changes in endothelial cells

  1. Yalda Afshar  Is a corresponding author
  2. Feyiang Ma
  3. Austin Quach
  4. Anhyo Jeong
  5. Hannah L Sunshine
  6. Vanessa Freitas
  7. Yasaman Jami-Alahmadi
  8. Raphael Helaers
  9. Xinmin Li
  10. Matteo Pellegrini
  11. James A Wohlschlegel
  12. Casey E Romanoski
  13. Miikka Vikkula
  14. Luisa Iruela-Arispe
  1. University of California, Los Angeles, United States
  2. Northwestern University, United States
  3. University of São Paulo, Brazil
  4. University of Louvain, Belgium
  5. University of Arizona, United States

Abstract

Environmental cues, such as physical forces and heterotypic cell interactions play a critical role in cell function, yet their collective contributions to transcriptional changes are unclear. Focusing on human endothelial cells, we performed broad individual sample analysis to identify transcriptional drifts associated with environmental changes that were independent of genetic background. Global gene expression profiling by RNAseq and protein expression by LC-MS directed proteomics distinguished endothelial cells in vivo from genetically matched culture (in vitro) samples. Over 43% of the transcriptome was significantly changed by the in vitro environment. Subjecting cultured cells to long-term shear stress significantly rescued the expression of approximately 17% of genes. Inclusion of heterotypic interactions by co-culture of endothelial cells with smooth muscle cells normalized approximately 9% of the original in vivo signature. We also identified novel flow dependent genes, as well as genes that necessitate heterotypic cell interactions to mimic the in vivo transcriptome. Our findings highlight specific genes and pathways that rely on contextual information for adequate expression from those that are agnostic of such environmental cues.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file, Source Data files have been provided

The following previously published data sets were used

Article and author information

Author details

  1. Yalda Afshar

    Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    YAfshar@mednet.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3807-7022
  2. Feyiang Ma

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Austin Quach

    Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anhyo Jeong

    Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hannah L Sunshine

    Department of Cell and Developmental Biology, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vanessa Freitas

    Departament of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9613-8626
  7. Yasaman Jami-Alahmadi

    Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8289-2222
  8. Raphael Helaers

    Human Molecular Genetics, University of Louvain, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Xinmin Li

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Matteo Pellegrini

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James A Wohlschlegel

    Departament of Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Casey E Romanoski

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0149-225X
  13. Miikka Vikkula

    Human Molecular Genetics, University of Louvain, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  14. Luisa Iruela-Arispe

    Department of Cell and Developmental Biology, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3050-4168

Funding

National Institutes of Health (R35HL140014)

  • Luisa Iruela-Arispe

National Institutes of Health (R01HL147187)

  • Casey E Romanoski

Foundation for the National Institutes of Health (FAPESP 2016/19968-3)

  • Vanessa Freitas

National Institutes of Health (K12 HD000849)

  • Yalda Afshar

National Institutes of Health (T32HL069766)

  • Yalda Afshar

Fondation Leducq (21CVD03)

  • Miikka Vikkula
  • Luisa Iruela-Arispe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human umbilical cords were collected under Institutional Review Board (UCLA IRB#16-001694) at time of the delivery and processed 2-4 hours from time of birth. All samples were collected from patients who provided signed informed consent.

Copyright

© 2023, Afshar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,306
    views
  • 347
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yalda Afshar
  2. Feyiang Ma
  3. Austin Quach
  4. Anhyo Jeong
  5. Hannah L Sunshine
  6. Vanessa Freitas
  7. Yasaman Jami-Alahmadi
  8. Raphael Helaers
  9. Xinmin Li
  10. Matteo Pellegrini
  11. James A Wohlschlegel
  12. Casey E Romanoski
  13. Miikka Vikkula
  14. Luisa Iruela-Arispe
(2023)
Transcriptional drifts associated with environmental changes in endothelial cells
eLife 12:e81370.
https://doi.org/10.7554/eLife.81370

Share this article

https://doi.org/10.7554/eLife.81370

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.