Transcriptional drifts associated with environmental changes in endothelial cells

  1. Yalda Afshar  Is a corresponding author
  2. Feyiang Ma
  3. Austin Quach
  4. Anhyo Jeong
  5. Hannah L Sunshine
  6. Vanessa Freitas
  7. Yasaman Jami-Alahmadi
  8. Raphael Helaers
  9. Xinmin Li
  10. Matteo Pellegrini
  11. James A Wohlschlegel
  12. Casey E Romanoski
  13. Miikka Vikkula
  14. M Luisa Iruela-Arispe
  1. University of California, Los Angeles, United States
  2. Northwestern University, United States
  3. University of São Paulo, Brazil
  4. University of Louvain, Belgium
  5. University of Arizona, United States

Abstract

Environmental cues, such as physical forces and heterotypic cell interactions play a critical role in cell function, yet their collective contributions to transcriptional changes are unclear. Focusing on human endothelial cells, we performed broad individual sample analysis to identify transcriptional drifts associated with environmental changes that were independent of genetic background. Global gene expression profiling by RNAseq and protein expression by LC-MS directed proteomics distinguished endothelial cells in vivo from genetically matched culture (in vitro) samples. Over 43% of the transcriptome was significantly changed by the in vitro environment. Subjecting cultured cells to long-term shear stress significantly rescued the expression of approximately 17% of genes. Inclusion of heterotypic interactions by co-culture of endothelial cells with smooth muscle cells normalized approximately 9% of the original in vivo signature. We also identified novel flow dependent genes, as well as genes that necessitate heterotypic cell interactions to mimic the in vivo transcriptome. Our findings highlight specific genes and pathways that rely on contextual information for adequate expression from those that are agnostic of such environmental cues.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file, Source Data files have been provided

The following previously published data sets were used

Article and author information

Author details

  1. Yalda Afshar

    Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    YAfshar@mednet.ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3807-7022
  2. Feyiang Ma

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Austin Quach

    Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anhyo Jeong

    Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hannah L Sunshine

    Department of Cell and Developmental Biology, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vanessa Freitas

    Departament of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9613-8626
  7. Yasaman Jami-Alahmadi

    Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8289-2222
  8. Raphael Helaers

    Human Molecular Genetics, University of Louvain, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  9. Xinmin Li

    Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Matteo Pellegrini

    Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James A Wohlschlegel

    Departament of Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Casey E Romanoski

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0149-225X
  13. Miikka Vikkula

    Human Molecular Genetics, University of Louvain, Brussels, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  14. M Luisa Iruela-Arispe

    Department of Cell and Developmental Biology, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3050-4168

Funding

National Institutes of Health (R35HL140014)

  • M Luisa Iruela-Arispe

National Institutes of Health (R01HL147187)

  • Casey E Romanoski

Foundation for the National Institutes of Health (FAPESP 2016/19968-3)

  • Vanessa Freitas

National Institutes of Health (K12 HD000849)

  • Yalda Afshar

National Institutes of Health (T32HL069766)

  • Yalda Afshar

Fondation Leducq (21CVD03)

  • Miikka Vikkula
  • M Luisa Iruela-Arispe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ilse S Daehn, Icahn School of Medicine at Mount Sinai, United States

Ethics

Human subjects: Human umbilical cords were collected under Institutional Review Board (UCLA IRB#16-001694) at time of the delivery and processed 2-4 hours from time of birth. All samples were collected from patients who provided signed informed consent.

Version history

  1. Received: June 24, 2022
  2. Preprint posted: July 9, 2022 (view preprint)
  3. Accepted: March 26, 2023
  4. Accepted Manuscript published: March 27, 2023 (version 1)
  5. Accepted Manuscript updated: March 29, 2023 (version 2)
  6. Version of Record published: May 9, 2023 (version 3)

Copyright

© 2023, Afshar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,900
    views
  • 293
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yalda Afshar
  2. Feyiang Ma
  3. Austin Quach
  4. Anhyo Jeong
  5. Hannah L Sunshine
  6. Vanessa Freitas
  7. Yasaman Jami-Alahmadi
  8. Raphael Helaers
  9. Xinmin Li
  10. Matteo Pellegrini
  11. James A Wohlschlegel
  12. Casey E Romanoski
  13. Miikka Vikkula
  14. M Luisa Iruela-Arispe
(2023)
Transcriptional drifts associated with environmental changes in endothelial cells
eLife 12:e81370.
https://doi.org/10.7554/eLife.81370

Share this article

https://doi.org/10.7554/eLife.81370

Further reading

    1. Cell Biology
    Zhongyun Xie, Yongping Chai ... Wei Li
    Research Article

    Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+–adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD’s asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.