Constitutive activation and oncogenicity are mediated by loss of helical structure at the cytosolic boundary of thrombopoietin receptor mutant dimers

Abstract

Dimerization of the thrombopoietin receptor (TpoR) is necessary for receptor activation and downstream signaling through activated Janus kinase 2. We have shown previously that different orientations of the transmembrane (TM) helices within a receptor dimer can lead to different signaling outputs. Here we addressed the structural basis of activation for receptor mutations S505N and W515K that induce myeloproliferative neoplasms. We show using in vivo bone marrow reconstitution experiments that ligand-independent activation of TpoR by TM asparagine (Asn) substitutions is proportional to the proximity of the Asn mutation to the intracellular membrane surface. Solid-state NMR experiments on TM peptides indicate a progressive loss of helical structure in the juxtamembrane (JM) R/KWQFP motif with proximity of Asn substitutions to the cytosolic boundary. Mutational studies in the TpoR cytosolic JM region show that loss of the helical structure in the JM motif by itself can induce activation, but only when localized to a maximum of 6 amino acids downstream of W515, the helicity of the remaining region until Box 1 being required for receptor function. The constitutive activation of TpoR mutants S505N and W515K can be inhibited by rotation of TM helices within the TpoR dimer, which also restores helicity around W515. Together these data allow us to develop a general model for activation of TpoR and to explain the critical role of the JM W515 residue in the regulation of the activity of the receptor.

Data availability

All data generated or analyzed during this study are included in the supporting file; Source Data files have been provided for Figures 1, 2, 4, 5 and 6. The materials generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request.

Article and author information

Author details

  1. Jean-Philippe Defour

    de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  2. Emilie Leroy

    de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  3. Sharmila Dass

    Department of Biochemistry and Cell Biology, Stony Brook University, New-York, United States
    Competing interests
    No competing interests declared.
  4. Thomas Balligand

    de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  5. Gabriel Levy

    de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6746-3083
  6. Ian C Brett

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    No competing interests declared.
  7. Nicolas Papadopoulos

    de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7869-862X
  8. Céline Mouton

    de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  9. Lidvine Genet

    de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  10. Christian Pecquet

    de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  11. Judith Staerk

    de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  12. Steven O Smith

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    For correspondence
    steven.o.smith@stonybrook.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1861-7159
  13. Stefan N Constantinescu

    de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
    For correspondence
    stefan.constantinescu@bru.licr.org
    Competing interests
    Stefan N Constantinescu, is co-founder of MyeloPro Diagnostics and Research GmbH, Vienna, Austria.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8599-2699

Funding

Télévie PhD fellowship

  • Thomas Balligand

W. M. Keck Foundation

  • Steven O Smith

Fonds De La Recherche Scientifique - FNRS

  • Nicolas Papadopoulos

Les avions de Sebastien

  • Gabriel Levy

Ludwig Institute for Cancer Research

  • Stefan N Constantinescu

Stichting Tegen Kanker

  • Stefan N Constantinescu

Salus Sanguinis

  • Stefan N Constantinescu

Les avions de Sébastien

  • Stefan N Constantinescu

Action de recherche concertée (16/21-073)

  • Stefan N Constantinescu

Walloon excellence in life sciences and biotechnology (F 44/8/5 - MCF/UIG - 10955)

  • Stefan N Constantinescu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This work was approved by the Ethics Committee for Animal Experimentation of the Université catholique de Louvain under the reference 2019/UCL/MD/026 . For this specific work in the field of cancer research, pain and discomfort of the animals was monitored in strict accordance with the recommendations on best practice and commonly used reference in the field : Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DA, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA; Committee of the National Cancer Research Institute. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010 May 25;102(11):1555-77. doi: 10.1038/sj.bjc.6605642. PMID: 20502460; PMCID: PMC2883160.

Copyright

© 2023, Defour et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 738
    views
  • 112
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jean-Philippe Defour
  2. Emilie Leroy
  3. Sharmila Dass
  4. Thomas Balligand
  5. Gabriel Levy
  6. Ian C Brett
  7. Nicolas Papadopoulos
  8. Céline Mouton
  9. Lidvine Genet
  10. Christian Pecquet
  11. Judith Staerk
  12. Steven O Smith
  13. Stefan N Constantinescu
(2023)
Constitutive activation and oncogenicity are mediated by loss of helical structure at the cytosolic boundary of thrombopoietin receptor mutant dimers
eLife 12:e81521.
https://doi.org/10.7554/eLife.81521

Share this article

https://doi.org/10.7554/eLife.81521

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Sofia V Krasik, Ekaterina A Bryushkova ... Ekaterina O Serebrovskaya
    Research Article

    The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.