Discovery of runs-of-homozygosity diplotype clusters and their associations with diseases in UK Biobank

  1. Ardalan Naseri
  2. Degui Zhi  Is a corresponding author
  3. Shaojie Zhang  Is a corresponding author
  1. The University of Texas Health Science Center at Houston, United States
  2. University of Central Florida, United States

Abstract

Runs of homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE, to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 SNPs and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended HLA region and autoimmune disorders. We found an association between a diplotype covering the HFE gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (P-value=1.82×10-11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.

Data availability

This research has been conducted using the UK Biobank Resource under Application Number 24247.The source code is available at https://github.com/ZhiGroup/ROH-DICE.

The following previously published data sets were used

Article and author information

Author details

  1. Ardalan Naseri

    School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2747-2193
  2. Degui Zhi

    School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, United States
    For correspondence
    degui.zhi@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7754-1890
  3. Shaojie Zhang

    Department of Computer Science, University of Central Florida, Orlando, United States
    For correspondence
    shzhang@cs.ucf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4051-5549

Funding

National Institutes of Health (R01 HG010086)

  • Ardalan Naseri
  • Degui Zhi
  • Shaojie Zhang

National Institutes of Health (R56 HG011509)

  • Ardalan Naseri
  • Degui Zhi
  • Shaojie Zhang

National Institutes of Health (OT2 OD002751)

  • Ardalan Naseri
  • Degui Zhi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ziyue Gao, University of Pennsylvania, United States

Ethics

Human subjects: Our analysis was approved by The University of Texas Health Science Center at Houston committee for the protection of human subjects under No. HSC-SBMI-23-0583. UK Biobank (UKBB) has secured informed consent from the participants in the use of their data for approved research projects. UKBB data was accessed via approved project 24247.

Version history

  1. Received: July 8, 2022
  2. Accepted: June 20, 2024
  3. Accepted Manuscript published: June 21, 2024 (version 1)

Copyright

© 2024, Naseri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 438
    views
  • 63
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ardalan Naseri
  2. Degui Zhi
  3. Shaojie Zhang
(2024)
Discovery of runs-of-homozygosity diplotype clusters and their associations with diseases in UK Biobank
eLife 13:e81698.
https://doi.org/10.7554/eLife.81698

Share this article

https://doi.org/10.7554/eLife.81698

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Zachary Shaffer, Roberto Romero ... Nardhy Gomez-Lopez
    Research Article

    Background:

    Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB.

    Methods:

    Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations.

    Results:

    Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB.

    Conclusions:

    The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes.

    Funding:

    This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.

    1. Computational and Systems Biology
    Iván Plaza-Menacho
    Insight

    A study of two enzymes in the brain reveals new insights into how redox reactions regulate the activity of protein kinases.