Quantifying the impact of immune history and variant on SARS-CoV-2 viral kinetics and infection rebound: a retrospective cohort study

  1. James A Hay
  2. Stephen M Kissler
  3. Joseph R Fauver
  4. Christina Mack
  5. Caroline G Tai
  6. Radhika M Samant
  7. Sarah Connolly
  8. Deverick J Anderson
  9. Gaurav Khullar
  10. Matthew MacKay
  11. Miral Patel
  12. Shannan Kelly
  13. April Manhertz
  14. Isaac Eiter
  15. Daisy Salgado
  16. Tim Baker
  17. Ben Howard
  18. Joel T Dudley
  19. Christopher E Mason
  20. Manoj Nair
  21. Yaoxing Huang
  22. John DiFiori
  23. David D Ho
  24. Nathan Grubaugh  Is a corresponding author
  25. Yonatan H Grad  Is a corresponding author
  1. Harvard TH Chan School of Public Health, United States
  2. Yale School of Public Health, United States
  3. IQVIA, United States
  4. Duke Center for Antimicrobial Stewardship and Infection Prevention, United States
  5. Tempus Labs, United States
  6. Columbia University, United States
  7. Hospital for Special Surgery, United States

Abstract

Background: The combined impact of immunity and SARS-CoV-2 variants on viral kinetics during infections has been unclear.

Methods: We characterized 1,280 infections from the National Basketball Association occupational health cohort identified between June 2020 and January 2022 using serial RT-qPCR testing. Logistic regression and semi-mechanistic viral RNA kinetics models were used to quantify the effect of age, variant, symptom status, infection history, vaccination status and antibody titer to the founder SARS-CoV-2 strain on the duration of potential infectiousness and overall viral kinetics. The frequency of viral rebounds was quantified under multiple cycle threshold (Ct) value-based definitions.

Results: Among individuals detected partway through their infection, 51.0% (95% credible interval [CrI]: 48.3-53.6%) remained potentially infectious (Ct<30) five days post detection, with small differences across variants and vaccination status. Only seven viral rebounds (0.7%; N=999) were observed, with rebound defined as 3+ days with Ct<30 following an initial clearance of 3+ days with Ct≥30. High antibody titers against the founder SARS-CoV-2 strain predicted lower peak viral loads and shorter durations of infection. Among Omicron BA.1 infections, boosted individuals had lower pre-booster antibody titers and longer clearance times than non-boosted individuals.

Conclusions: SARS-CoV-2 viral kinetics are partly determined by immunity and variant but dominated by individual-level variation. Since booster vaccination protects against infection, longer clearance times for BA.1-infected, boosted individuals may reflect a less effective immune response, more common in older individuals, that increases infection risk and reduces viral RNA clearance rate. The shifting landscape of viral kinetics underscores the need for continued monitoring to optimize isolation policies and to contextualize the health impacts of therapeutics and vaccines.

Funding: Supported in part by CDC contract #200-2016-91779, a sponsored research agreement to Yale University from the National Basketball Association contract #21-003529, and the National Basketball Players Association.

Data availability

All code and data required to reproduce the analyses are available at https://github.com/gradlab/SC2-kinetics-immune-history.

Article and author information

Author details

  1. James A Hay

    Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1998-1844
  2. Stephen M Kissler

    Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    Stephen M Kissler, SMK has a consulting agreement with the NBA.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3062-7800
  3. Joseph R Fauver

    Yale School of Public Health, New Haven, United States
    Competing interests
    Joseph R Fauver, has a consulting agreement for Tempus and receives financial support from Tempus to develop SARS-CoV-2 diagnostic tests.
  4. Christina Mack

    IQVIA, Durham, United States
    Competing interests
    Christina Mack, is an employee of IQVIA, Real World Solutions.
  5. Caroline G Tai

    IQVIA, Durham, United States
    Competing interests
    Caroline G Tai, is an employee of IQVIA, Real World Solutions.
  6. Radhika M Samant

    IQVIA, Durham, United States
    Competing interests
    Radhika M Samant, is an employee of IQVIA, Real World Solutions.
  7. Sarah Connolly

    IQVIA, Durham, United States
    Competing interests
    Sarah Connolly, is an employee of IQVIA, Real World Solutions.
  8. Deverick J Anderson

    Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, United States
    Competing interests
    Deverick J Anderson, is co-owner of Infection Control Education for Major Sports.
  9. Gaurav Khullar

    Tempus Labs, Chicago, United States
    Competing interests
    Gaurav Khullar, is an employee of Tempus Labs.
  10. Matthew MacKay

    Tempus Labs, Chicago, United States
    Competing interests
    Matthew MacKay, is an employee of Tempus Labs.
  11. Miral Patel

    Tempus Labs, Chicago, United States
    Competing interests
    Miral Patel, is an employee of Tempus Labs.
  12. Shannan Kelly

    Tempus Labs, Chicago, United States
    Competing interests
    Shannan Kelly, is an employee of Tempus Labs.
  13. April Manhertz

    Tempus Labs, Chicago, United States
    Competing interests
    April Manhertz, is an employee of Tempus Labs.
  14. Isaac Eiter

    Tempus Labs, Chicago, United States
    Competing interests
    Isaac Eiter, is an employee of Tempus Labs.
  15. Daisy Salgado

    Tempus Labs, Chicago, United States
    Competing interests
    Daisy Salgado, is an employee of Tempus Labs.
  16. Tim Baker

    Tempus Labs, Chicago, United States
    Competing interests
    Tim Baker, is an employee of Tempus Labs.
  17. Ben Howard

    Tempus Labs, Chicago, United States
    Competing interests
    Ben Howard, is an employee of Tempus Labs.
  18. Joel T Dudley

    Tempus Labs, Chicago, United States
    Competing interests
    Joel T Dudley, is an employee of Tempus Labs.
  19. Christopher E Mason

    Tempus Labs, Chicago, United States
    Competing interests
    Christopher E Mason, is an employee of Tempus Labs.
  20. Manoj Nair

    Vagelos College of Physicians and Surgeons, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5994-3957
  21. Yaoxing Huang

    Vagelos College of Physicians and Surgeons, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  22. John DiFiori

    Hospital for Special Surgery, New York, United States
    Competing interests
    John DiFiori, is an employee of the NBA.
  23. David D Ho

    Vagelos College of Physicians and Surgeons, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  24. Nathan Grubaugh

    Yale School of Public Health, New Haven, United States
    For correspondence
    grubaughlab@gmail.com
    Competing interests
    Nathan Grubaugh, has a consulting agreement for Tempus and receives financial support from Tempus to develop SARS-CoV-2 diagnostic tests.
  25. Yonatan H Grad

    Harvard TH Chan School of Public Health, Boston, United States
    For correspondence
    ygrad@hsph.harvard.edu
    Competing interests
    Yonatan H Grad, has a consulting agreement with the NBA.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5646-1314

Funding

Centers for Disease Control and Prevention (200-2016-91779)

  • Yonatan H Grad

National Basketball Association (21-003529)

  • Nathan Grubaugh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Hay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,725
    views
  • 357
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James A Hay
  2. Stephen M Kissler
  3. Joseph R Fauver
  4. Christina Mack
  5. Caroline G Tai
  6. Radhika M Samant
  7. Sarah Connolly
  8. Deverick J Anderson
  9. Gaurav Khullar
  10. Matthew MacKay
  11. Miral Patel
  12. Shannan Kelly
  13. April Manhertz
  14. Isaac Eiter
  15. Daisy Salgado
  16. Tim Baker
  17. Ben Howard
  18. Joel T Dudley
  19. Christopher E Mason
  20. Manoj Nair
  21. Yaoxing Huang
  22. John DiFiori
  23. David D Ho
  24. Nathan Grubaugh
  25. Yonatan H Grad
(2022)
Quantifying the impact of immune history and variant on SARS-CoV-2 viral kinetics and infection rebound: a retrospective cohort study
eLife 11:e81849.
https://doi.org/10.7554/eLife.81849

Share this article

https://doi.org/10.7554/eLife.81849

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.

    1. Epidemiology and Global Health
    Xiaoning Wang, Jinxiang Zhao ... Dong Liu
    Research Article

    Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.