Quantifying the impact of immune history and variant on SARS-CoV-2 viral kinetics and infection rebound: a retrospective cohort study

  1. James A Hay
  2. Stephen M Kissler
  3. Joseph R Fauver
  4. Christina Mack
  5. Caroline G Tai
  6. Radhika M Samant
  7. Sarah Connolly
  8. Deverick J Anderson
  9. Gaurav Khullar
  10. Matthew MacKay
  11. Miral Patel
  12. Shannan Kelly
  13. April Manhertz
  14. Isaac Eiter
  15. Daisy Salgado
  16. Tim Baker
  17. Ben Howard
  18. Joel T Dudley
  19. Christopher E Mason
  20. Manoj Nair
  21. Yaoxing Huang
  22. John DiFiori
  23. David D Ho
  24. Nathan Grubaugh  Is a corresponding author
  25. Yonatan H Grad  Is a corresponding author
  1. Harvard TH Chan School of Public Health, United States
  2. Yale School of Public Health, United States
  3. IQVIA, United States
  4. Duke Center for Antimicrobial Stewardship and Infection Prevention, United States
  5. Tempus Labs, United States
  6. Columbia University, United States
  7. Hospital for Special Surgery, United States

Abstract

Background: The combined impact of immunity and SARS-CoV-2 variants on viral kinetics during infections has been unclear.

Methods: We characterized 1,280 infections from the National Basketball Association occupational health cohort identified between June 2020 and January 2022 using serial RT-qPCR testing. Logistic regression and semi-mechanistic viral RNA kinetics models were used to quantify the effect of age, variant, symptom status, infection history, vaccination status and antibody titer to the founder SARS-CoV-2 strain on the duration of potential infectiousness and overall viral kinetics. The frequency of viral rebounds was quantified under multiple cycle threshold (Ct) value-based definitions.

Results: Among individuals detected partway through their infection, 51.0% (95% credible interval [CrI]: 48.3-53.6%) remained potentially infectious (Ct<30) five days post detection, with small differences across variants and vaccination status. Only seven viral rebounds (0.7%; N=999) were observed, with rebound defined as 3+ days with Ct<30 following an initial clearance of 3+ days with Ct≥30. High antibody titers against the founder SARS-CoV-2 strain predicted lower peak viral loads and shorter durations of infection. Among Omicron BA.1 infections, boosted individuals had lower pre-booster antibody titers and longer clearance times than non-boosted individuals.

Conclusions: SARS-CoV-2 viral kinetics are partly determined by immunity and variant but dominated by individual-level variation. Since booster vaccination protects against infection, longer clearance times for BA.1-infected, boosted individuals may reflect a less effective immune response, more common in older individuals, that increases infection risk and reduces viral RNA clearance rate. The shifting landscape of viral kinetics underscores the need for continued monitoring to optimize isolation policies and to contextualize the health impacts of therapeutics and vaccines.

Funding: Supported in part by CDC contract #200-2016-91779, a sponsored research agreement to Yale University from the National Basketball Association contract #21-003529, and the National Basketball Players Association.

Data availability

All code and data required to reproduce the analyses are available at https://github.com/gradlab/SC2-kinetics-immune-history.

Article and author information

Author details

  1. James A Hay

    Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1998-1844
  2. Stephen M Kissler

    Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    Stephen M Kissler, SMK has a consulting agreement with the NBA.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3062-7800
  3. Joseph R Fauver

    Yale School of Public Health, New Haven, United States
    Competing interests
    Joseph R Fauver, has a consulting agreement for Tempus and receives financial support from Tempus to develop SARS-CoV-2 diagnostic tests.
  4. Christina Mack

    IQVIA, Durham, United States
    Competing interests
    Christina Mack, is an employee of IQVIA, Real World Solutions.
  5. Caroline G Tai

    IQVIA, Durham, United States
    Competing interests
    Caroline G Tai, is an employee of IQVIA, Real World Solutions.
  6. Radhika M Samant

    IQVIA, Durham, United States
    Competing interests
    Radhika M Samant, is an employee of IQVIA, Real World Solutions.
  7. Sarah Connolly

    IQVIA, Durham, United States
    Competing interests
    Sarah Connolly, is an employee of IQVIA, Real World Solutions.
  8. Deverick J Anderson

    Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, United States
    Competing interests
    Deverick J Anderson, is co-owner of Infection Control Education for Major Sports.
  9. Gaurav Khullar

    Tempus Labs, Chicago, United States
    Competing interests
    Gaurav Khullar, is an employee of Tempus Labs.
  10. Matthew MacKay

    Tempus Labs, Chicago, United States
    Competing interests
    Matthew MacKay, is an employee of Tempus Labs.
  11. Miral Patel

    Tempus Labs, Chicago, United States
    Competing interests
    Miral Patel, is an employee of Tempus Labs.
  12. Shannan Kelly

    Tempus Labs, Chicago, United States
    Competing interests
    Shannan Kelly, is an employee of Tempus Labs.
  13. April Manhertz

    Tempus Labs, Chicago, United States
    Competing interests
    April Manhertz, is an employee of Tempus Labs.
  14. Isaac Eiter

    Tempus Labs, Chicago, United States
    Competing interests
    Isaac Eiter, is an employee of Tempus Labs.
  15. Daisy Salgado

    Tempus Labs, Chicago, United States
    Competing interests
    Daisy Salgado, is an employee of Tempus Labs.
  16. Tim Baker

    Tempus Labs, Chicago, United States
    Competing interests
    Tim Baker, is an employee of Tempus Labs.
  17. Ben Howard

    Tempus Labs, Chicago, United States
    Competing interests
    Ben Howard, is an employee of Tempus Labs.
  18. Joel T Dudley

    Tempus Labs, Chicago, United States
    Competing interests
    Joel T Dudley, is an employee of Tempus Labs.
  19. Christopher E Mason

    Tempus Labs, Chicago, United States
    Competing interests
    Christopher E Mason, is an employee of Tempus Labs.
  20. Manoj Nair

    Vagelos College of Physicians and Surgeons, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5994-3957
  21. Yaoxing Huang

    Vagelos College of Physicians and Surgeons, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  22. John DiFiori

    Hospital for Special Surgery, New York, United States
    Competing interests
    John DiFiori, is an employee of the NBA.
  23. David D Ho

    Vagelos College of Physicians and Surgeons, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  24. Nathan Grubaugh

    Yale School of Public Health, New Haven, United States
    For correspondence
    grubaughlab@gmail.com
    Competing interests
    Nathan Grubaugh, has a consulting agreement for Tempus and receives financial support from Tempus to develop SARS-CoV-2 diagnostic tests.
  25. Yonatan H Grad

    Harvard TH Chan School of Public Health, Boston, United States
    For correspondence
    ygrad@hsph.harvard.edu
    Competing interests
    Yonatan H Grad, has a consulting agreement with the NBA.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5646-1314

Funding

Centers for Disease Control and Prevention (200-2016-91779)

  • Yonatan H Grad

National Basketball Association (21-003529)

  • Nathan Grubaugh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Hay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,580
    views
  • 340
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James A Hay
  2. Stephen M Kissler
  3. Joseph R Fauver
  4. Christina Mack
  5. Caroline G Tai
  6. Radhika M Samant
  7. Sarah Connolly
  8. Deverick J Anderson
  9. Gaurav Khullar
  10. Matthew MacKay
  11. Miral Patel
  12. Shannan Kelly
  13. April Manhertz
  14. Isaac Eiter
  15. Daisy Salgado
  16. Tim Baker
  17. Ben Howard
  18. Joel T Dudley
  19. Christopher E Mason
  20. Manoj Nair
  21. Yaoxing Huang
  22. John DiFiori
  23. David D Ho
  24. Nathan Grubaugh
  25. Yonatan H Grad
(2022)
Quantifying the impact of immune history and variant on SARS-CoV-2 viral kinetics and infection rebound: a retrospective cohort study
eLife 11:e81849.
https://doi.org/10.7554/eLife.81849

Share this article

https://doi.org/10.7554/eLife.81849

Further reading

    1. Epidemiology and Global Health
    Jie Liang, Yang Pan ... Fanfan Zheng
    Research Article

    Background:

    The associations of age at diagnosis of breast cancer with incident myocardial infarction (MI) and heart failure (HF) remain unexamined. Addressing this problem could promote understanding of the cardiovascular impact of breast cancer.

    Methods:

    Data were obtained from the UK Biobank. Information on the diagnosis of breast cancer, MI, and HF was collected at baseline and follow-ups (median = 12.8 years). The propensity score matching method and Cox proportional hazards models were employed.

    Results:

    A total of 251,277 female participants (mean age: 56.8 ± 8.0 years), of whom 16,241 had breast cancer, were included. Among breast cancer participants, younger age at diagnosis (per 10-year decrease) was significantly associated with elevated risks of MI (hazard ratio [HR] = 1.36, 95% confidence interval [CI] 1.19–1.56, p<0.001) and HF (HR = 1.31, 95% CI 1.18–1.46, p<0.001). After propensity score matching, breast cancer patients with younger diagnosis age had significantly higher risks of MI and HF than controls without breast cancer.

    Conclusions:

    Younger age at diagnosis of breast cancer was associated with higher risks of incident MI and HF, underscoring the necessity to pay additional attention to the cardiovascular health of breast cancer patients diagnosed at younger age to conduct timely interventions to attenuate the subsequent risks of incident cardiovascular diseases.

    Funding:

    This study was supported by grants from the National Natural Science Foundation of China (82373665 and 81974490), the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences (2021-RC330-001), and the 2022 China Medical Board-open competition research grant (22-466).

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Wei Q Deng, Nathan Cawte ... Sonia S Anand
    Research Article

    Background:

    Maternal smoking has been linked to adverse health outcomes in newborns but the extent to which it impacts newborn health has not been quantified through an aggregated cord blood DNA methylation (DNAm) score. Here, we examine the feasibility of using cord blood DNAm scores leveraging large external studies as discovery samples to capture the epigenetic signature of maternal smoking and its influence on newborns in White European and South Asian populations.

    Methods:

    We first examined the association between individual CpGs and cigarette smoking during pregnancy, and smoking exposure in two White European birth cohorts (n=744). Leveraging established CpGs for maternal smoking, we constructed a cord blood epigenetic score of maternal smoking that was validated in one of the European-origin cohorts (n=347). This score was then tested for association with smoking status, secondary smoking exposure during pregnancy, and health outcomes in offspring measured after birth in an independent White European (n=397) and a South Asian birth cohort (n=504).

    Results:

    Several previously reported genes for maternal smoking were supported, with the strongest and most consistent association signal from the GFI1 gene (6 CpGs with p<5 × 10-5). The epigenetic maternal smoking score was strongly associated with smoking status during pregnancy (OR = 1.09 [1.07, 1.10], p=5.5 × 10-33) and more hours of self-reported smoking exposure per week (1.93 [1.27, 2.58], p=7.8 × 10-9) in White Europeans. However, it was not associated with self-reported exposure (p>0.05) among South Asians, likely due to a lack of smoking in this group. The same score was consistently associated with a smaller birth size (–0.37±0.12 cm, p=0.0023) in the South Asian cohort and a lower birth weight (–0.043±0.013 kg, p=0.0011) in the combined cohorts.

    Conclusions:

    This cord blood epigenetic score can help identify babies exposed to maternal smoking and assess its long-term impact on growth. Notably, these results indicate a consistent association between the DNAm signature of maternal smoking and a small body size and low birth weight in newborns, in both White European mothers who exhibited some amount of smoking and in South Asian mothers who themselves were not active smokers.

    Funding:

    This study was funded by the Canadian Institutes of Health Research Metabolomics Team Grant: MWG-146332.