Constitutively active STING causes neuroinflammation and degeneration of dopaminergic neurons in mice

Abstract

Stimulator of interferon genes (STING) is activated after detection of cytoplasmic dsDNA by cGAS (cyclic GMP-AMP synthase) as part of the innate immunity defence against viral pathogens. STING binds TANK-binding kinase 1 (TBK1). TBK1 mutations are associated with familial amyotrophic lateral sclerosis, and the STING pathway has been implicated in the pathogenesis of further neurodegenerative diseases. To test whether STING activation is sufficient to induce neurodegeneration, we analysed a mouse model that expresses the constitutively active STING variant N153S. In this model, we focused on dopaminergic neurons, which are particularly sensitive to stress and represent a circumscribed population that can be precisely quantified. In adult mice expressing N153S STING, the number of dopaminergic neurons was smaller than in controls, as was the density of dopaminergic axon terminals and the concentration of dopamine in the striatum. We also observed alpha-synuclein pathology and a lower density of synaptic puncta. Neuroinflammation was quantified by staining astroglia and microglia, by measuring mRNAs, proteins and nuclear translocation of transcription factors. These neuroinflammatory markers were already elevated in juvenile mice although at this age the number of dopaminergic neurons was still unaffected, thus preceding the degeneration of dopaminergic neurons. More neuroinflammatory markers were blunted in mice deficient for inflammasomes than in mice deficient for signalling by type I interferons. Neurodegeneration, however, was blunted in both mice. Collectively, these findings demonstrate that chronic activation of the STING pathway is sufficient to cause degeneration of dopaminergic neurons. Targeting the STING pathway could therefore be beneficial in Parkinson’s disease and further neurodegenerative diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Eva M Szego

    Department of Neurology, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2629-2131
  2. Laura Malz

    Department of Pediatrics, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Nadine Bernhardt

    Department of Psychiatry, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3188-8431
  4. Angela Rösen-Wolff

    Department of Pediatrics, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Björn H Falkenburger

    Department of Neurology, TU Dresden, Dresden, Germany
    For correspondence
    Bjoern.Falkenburger@dzne.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2387-526X
  6. Hella Luksch

    Department of Pediatrics, TU Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (FA-658-3-1)

  • Björn H Falkenburger

Deutsche Forschungsgemeinschaft (SFB TRR237,B18)

  • Björn H Falkenburger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were carried out in accordance with the European CommunitiesCouncil Directive of November 24, 1986 (86/609/EEC) and approved by the LandesdirektionDresden, Germany.

Reviewing Editor

  1. Keqiang Ye, Chinese Academy of Sciences, China

Publication history

  1. Received: August 2, 2022
  2. Accepted: October 31, 2022
  3. Accepted Manuscript published: October 31, 2022 (version 1)

Copyright

© 2022, Szego et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,004
    Page views
  • 331
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eva M Szego
  2. Laura Malz
  3. Nadine Bernhardt
  4. Angela Rösen-Wolff
  5. Björn H Falkenburger
  6. Hella Luksch
(2022)
Constitutively active STING causes neuroinflammation and degeneration of dopaminergic neurons in mice
eLife 11:e81943.
https://doi.org/10.7554/eLife.81943

Further reading

    1. Epidemiology and Global Health
    2. Medicine
    Sonali Amarasekera, Prabhat Jha
    Insight

    Individuals recently diagnosed with a cardiovascular disease are at higher risk of developing a mental illness, with mortality increasing when both conditions are present.

    1. Cell Biology
    2. Medicine
    Sharon Elliot, Paola Catanuto ... Marilyn K Glassberg
    Research Article

    Background:

    MicroRNAs (miRNA) and other components contained in extracellular vesicles may reflect the presence of a disease. Lung tissue, sputum, and sera of individuals with idiopathic pulmonary fibrosis (IPF) show alterations in miRNA expression. We designed this study to test whether urine and/or tissue derived exosomal miRNAs from individuals with IPF carry cargo that can promote fibrosis.

    Methods:

    Exosomes were isolated from urine (U-IPFexo), lung tissue myofibroblasts (MF-IPFexo), serum from individuals with IPF (n=16) and age/sex-matched controls without lung disease (n=10). We analyzed microRNA expression of isolated exosomes and their in vivo bio-distribution. We investigated the effect on ex vivo skin wound healing and in in vivo mouse lung models.

    Results:

    U-IPFexo or MF-IPFexo expressed miR-let-7d, miR-29a-5p, miR-181b-3p and miR-199a-3p consistent with previous reports of miRNA expression obtained from lung tissue/sera from patients with IPF. In vivo bio-distribution experiments detected bioluminescent exosomes in the lung of normal C57Bl6 mice within 5 min after intravenous infusion, followed by distribution to other organs irrespective of exosome source. Exosomes labeled with gold nanoparticles and imaged by transmission electron microscopy were visualized in alveolar epithelial type I and type II cells. Treatment of human and mouse lung punches obtained from control, non-fibrotic lungs with either U-IPFexo or MF-IPFexo produced a fibrotic phenotype. A fibrotic phenotype was also induced in a human ex vivo skin model and in in vivo lung models.

    Conclusions:

    Our results provide evidence of a systemic feature of IPF whereby exosomes contain pro-fibrotic miRNAs when obtained from a fibrotic source and interfere with response to tissue injury as measured in skin and lung models.

    Funding:

    This work was supported in part by Lester and Sue Smith Foundation and The Samrick Family Foundation and NIH grants R21 AG060338 (SE and MKG), U01 DK119085 (IP, RS, MTC).