lncRNA read-through regulates the BX-C insulator Fub-1

  1. Airat Ibragimov  Is a corresponding author
  2. Xin Yang Bing
  3. Yulii Shidlovskii
  4. Michael Levine
  5. Pavel Georgiev
  6. Paul Schedl  Is a corresponding author
  1. Princeton University, United States
  2. Institute of Gene Biology Russian Academy of Sciences, Russian Federation

Abstract

hough long non-coding RNAs (lncRNAs) represent a substantial fraction of the Pol II transcripts in multicellular animals, only a few have known functions. Here we report that the blocking activity of the Bithorax complex (BX-C) Fub-1 boundary is segmentally regulated by its own lncRNA. The Fub-1 boundary is located between the Ultrabithorax (Ubx) gene and the bxd/pbx regulatory domain, which is responsible for regulating Ubx expression in parasegment PS6/segment A1. Fub-1 consists of two hypersensitive sites, HS1 and HS2. HS1 is an insulator while HS2 functions primarily as a lncRNA promoter. To activate Ubx expression in PS6/A1 enhancers in the bxd/pbx domain must be able to bypass Fub-1 blocking activity. We show that expression of the Fub-1 lncRNAs in PS6/A1 from the HS2 promoter inactivates Fub-1 insulating activity. Inactivation is due to readthrough as the HS2 promoter must be directed towards HS1 to disrupt blocking.

Data availability

Sequencing data have been deposited in GEO under accession code GSE217005. The data can be accessed using the following secure token sxyxomkyjlgxvmj

The following data sets were generated

Article and author information

Author details

  1. Airat Ibragimov

    Department of Molecular Biology, Princeton University, Princeton, United States
    For correspondence
    airati@princeton.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5973-9147
  2. Xin Yang Bing

    Lewis Sigler Institute, Princeton University, Princeton, United States
    Competing interests
    Xin Yang Bing, is affiliated with BlueRock Therapeutics. The author has no other competing interests to declare..
  3. Yulii Shidlovskii

    Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3643-9889
  4. Michael Levine

    Lewis Sigler Institute, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  5. Pavel Georgiev

    Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  6. Paul Schedl

    Department of Molecular Biology, Princeton University, Princeton, United States
    For correspondence
    pschedl@princeton.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5704-2349

Funding

National Institute of General Medical Sciences (R35 GM126975)

  • Paul Schedl

National Institute of General Medical Sciences (R01 GM118147)

  • Michael Levine

Russian Science Foundation (20-14-00201)

  • Yulii Shidlovskii

Russian Science Foundation (19-14-00103)

  • Pavel Georgiev

Ministry of Science and Higher Education of the Russian Federation (075-15-2019-1661)

  • Pavel Georgiev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Ibragimov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,087
    views
  • 131
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Airat Ibragimov
  2. Xin Yang Bing
  3. Yulii Shidlovskii
  4. Michael Levine
  5. Pavel Georgiev
  6. Paul Schedl
(2023)
lncRNA read-through regulates the BX-C insulator Fub-1
eLife 12:e84711.
https://doi.org/10.7554/eLife.84711

Share this article

https://doi.org/10.7554/eLife.84711

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Artem K Velichko, Nadezhda V Petrova ... Omar L Kantidze
    Research Article

    We investigated the role of the nucleolar protein Treacle in organizing and regulating the nucleolus in human cells. Our results support Treacle’s ability to form liquid-like phase condensates through electrostatic interactions among molecules. The formation of these biomolecular condensates is crucial for segregating nucleolar fibrillar centers from the dense fibrillar component and ensuring high levels of ribosomal RNA (rRNA) gene transcription and accurate rRNA processing. Both the central and C-terminal domains of Treacle are required to form liquid-like condensates. The initiation of phase separation is attributed to the C-terminal domain. The central domain is characterized by repeated stretches of alternatively charged amino acid residues and is vital for condensate stability. Overexpression of mutant forms of Treacle that cannot form liquid-like phase condensates compromises the assembly of fibrillar centers, suppressing rRNA gene transcription and disrupting rRNA processing. These mutant forms also fail to recruit DNA topoisomerase II binding protein 1 (TOPBP1), suppressing the DNA damage response in the nucleolus.

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Gülnihal Kavaklioglu, Alexandra Podhornik ... Christian Seiser
    Research Article

    Repression of retrotransposition is crucial for the successful fitness of a mammalian organism. The domesticated transposon protein L1TD1, derived from LINE-1 (L1) ORF1p, is an RNA-binding protein that is expressed only in some cancers and early embryogenesis. In human embryonic stem cells, it is found to be essential for maintaining pluripotency. In cancer, L1TD1 expression is highly correlative with malignancy progression and as such considered a potential prognostic factor for tumors. However, its molecular role in cancer remains largely unknown. Our findings reveal that DNA hypomethylation induces the expression of L1TD1 in HAP1 human tumor cells. L1TD1 depletion significantly modulates both the proteome and transcriptome and thereby reduces cell viability. Notably, L1TD1 associates with L1 transcripts and interacts with L1 ORF1p protein, thereby facilitating L1 retrotransposition. Our data suggest that L1TD1 collaborates with its ancestral L1 ORF1p as an RNA chaperone, ensuring the efficient retrotransposition of L1 retrotransposons, rather than directly impacting the abundance of L1TD1 targets. In this way, L1TD1 might have an important role not only during early development but also in tumorigenesis.