Neuroimaging and behavioral evidence that violent video games exert no negative effect on human empathy for pain and emotional reactivity to violence

Abstract

Influential accounts claim that violent video games (VVG) decrease players' emotional empathy by desensitizing them to both virtual and real-life violence. However, scientific evidence for this claim is inconclusive and controversially debated. To assess the causal effect of VVGs on the behavioral and neural correlates of empathy and emotional reactivity to violence, we conducted a prospective experimental study using functional magnetic resonance imaging (fMRI). We recruited eighty-nine male participants without prior VVG experience. Over the course of two weeks, participants played either a highly violent video game, or a non-violent version of the same game. Before and after this period, participants completed an fMRI experiment with paradigms measuring their empathy for pain and emotional reactivity to violent images. Applying a Bayesian analysis approach throughout enabled us to find substantial evidence for the absence of an effect of VVGs on the behavioral and neural correlates of empathy. Moreover, participants in the VVG group were not desensitized to images of real-world violence. These results imply that short and controlled exposure to VVGs does not numb empathy nor the responses to real-world violence. We discuss the implications of our findings regarding the potential and limitations of experimental research on the causal effects of VVGs. While VVGs might not have a discernible effect on the investigated subpopulation within our carefully controlled experimental setting, our results cannot preclude that effects could be found in settings with higher ecological validity, in vulnerable subpopulations, or after more extensive VVG play.

Data availability

Behavioral data, fMRI signal timecourses extracted from our regions of interest, task event timings, custom STAN code, and game images used in the emotional reactivity task are accessible at https://osf.io/yx423/. Unthresholded statistical maps are accessible at https://identifiers.org/neurovault.collection:13395. These include statistical maps from the analyses underlying the definition of our regions of interest, as well as the statistical maps from the frequentist analyses presented in Appendix 5. Full fMRI datasets from all participants are accessible at https://doi.org/10.5281/zenodo.10057633

The following data sets were generated

Article and author information

Author details

  1. Lukas Leopold Lengersdorff

    Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8750-5057
  2. Isabella C Wagner

    Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4383-8204
  3. Gloria Mittmann

    Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2750-7779
  4. David Sastre-Yagüe

    Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Andre Lüttig

    Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6026-6834
  6. Andreas Olsson

    Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Pedrag Petrovic

    Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5536-945X
  8. Claus Lamm

    Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
    For correspondence
    claus.lamm@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5422-0653

Funding

Vienna Science and Technology Fund (WWTF VRG13-007)

  • Claus Lamm

Hjärnfonden (FO2014-0189)

  • Pedrag Petrovic

Karolinska Institutet (2-70/2014-97)

  • Pedrag Petrovic

Knut och Alice Wallenbergs Stiftelse (KAW 2014.0237)

  • Andreas Olsson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the ethics committee of the Medical University of Vienna (decision number 1258/2017). All participants gave informed consent prior to the start of the first experimental session. The confederate depicted in Figure 1A has given informed consent that his photograph may be used for this publication.

Copyright

© 2023, Lengersdorff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,928
    views
  • 536
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lukas Leopold Lengersdorff
  2. Isabella C Wagner
  3. Gloria Mittmann
  4. David Sastre-Yagüe
  5. Andre Lüttig
  6. Andreas Olsson
  7. Pedrag Petrovic
  8. Claus Lamm
(2023)
Neuroimaging and behavioral evidence that violent video games exert no negative effect on human empathy for pain and emotional reactivity to violence
eLife 12:e84951.
https://doi.org/10.7554/eLife.84951

Share this article

https://doi.org/10.7554/eLife.84951

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Xin Zhou, Zhinuo Jenny Wang ... Blanca Rodriguez
    Research Article

    Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.

    1. Computational and Systems Biology
    Dylan C Sarver, Muzna Saqib ... G William Wong
    Research Article

    Organ function declines with age, and large-scale transcriptomic analyses have highlighted differential aging trajectories across tissues. The mechanism underlying shared and organ-selective functional changes across the lifespan, however, still remains poorly understood. Given the central role of mitochondria in powering cellular processes needed to maintain tissue health, we therefore undertook a systematic assessment of respiratory activity across 33 different tissues in young (2.5 months) and old (20 months) mice of both sexes. Our high-resolution mitochondrial respiration atlas reveals: (1) within any group of mice, mitochondrial activity varies widely across tissues, with the highest values consistently seen in heart, brown fat, and kidney; (2) biological sex is a significant but minor contributor to mitochondrial respiration, and its contributions are tissue-specific, with major differences seen in the pancreas, stomach, and white adipose tissue; (3) age is a dominant factor affecting mitochondrial activity, especially across most brain regions, different fat depots, skeletal muscle groups, eyes, and different regions of the gastrointestinal tract; (4) age effects can be sex- and tissue-specific, with some of the largest effects seen in pancreas, heart, adipose tissue, and skeletal muscle; and (5) while aging alters the functional trajectories of mitochondria in a majority of tissues, some are remarkably resilient to age-induced changes. Altogether, our data provide the most comprehensive compendium of mitochondrial respiration and illuminate functional signatures of aging across diverse tissues and organ systems.