Empathy: Exploring the impact of violence in video games

Playing a violent game for a few weeks did not alter neural and behavioral responses to the pain of others in inexperienced male gamers.
  1. Nicolas Roy
  2. Michel-Pierre Coll  Is a corresponding author
  1. École de Psychologie, Université Laval, Canada
  2. Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Canada

The release of Grand Theft Auto III in 2001 marked a turning point in the public discussion around video games (McLaughlin, 2008). With graphics more lifelike than ever, the game allowed players to act as criminals free to roam a city and commit senseless acts of violence against its population. Inevitably, social and research questions were raised regarding how this type of media could impact social and emotional wellbeing, in particular in the young men who form most of the gaming community. How would playing highly realistic games that allow the gratuitous murder and exploitation of others impact their psychological functioning?

This question has been notoriously difficult to answer scientifically, and it remains harshly debated (Devilly et al., 2023; Bushman and Anderson, 2021). Indeed, both real world observations and lab-based experiments have limitations when trying to assess how gaming may impact emotional, neural and behavioral mechanisms. Observational studies, which rely on measuring these processes without influencing them, are confounded by the fact that violent games tend to attract individuals who already have specific personality and social profiles (Braun et al., 2016). In contrast, experimental work is restricted by practical considerations; in the laboratory, participants can only be exposed to games for short periods, for example. It has also been hindered by inadequate study design, with experiments featuring control conditions that fail to effectively isolate violent content, or recruiting participants who have extensive experience with violent games. Now, in eLife, Claus Lamm and colleagues at the University of Vienna and Karolinska Institutet – including Lukas Lengersdorff as first author – report having designed an experimental study that overcomes many of these limitations (Lengersdorff et al., 2023).

The team recruited 89 young men with little gaming experience and no previous exposure to Grand Theft Auto V (GTA V). Half the participants were assigned to play a normal version of the game and incentivized to kill as many people as possible; the other half accessed a modified version of GTA V devoid of all violent content and got rewarded for taking pictures of other characters. Both groups played for seven hours over two weeks in a supervised lab setting. In addition, the participants’ neural and behavioral responses to images of people in pain or in emotionally charged situations were measured at the start and the end of the study, with Lengersdorff et al. using well-established fMRI and behavioral approaches to measure empathy and emotional reactivity (Singer et al., 2004).

The results showed that the two groups showed no neural or behavioural differences in the response to the distress of others. Additionally, statistical analyses using Bayesian techniques further suggested that playing a violent or non-violent version of the game had no effect on empathy for pain or emotional reactivity. Overall, these analyses provide solid evidence that men with little gaming experience do not get desensitised to the emotions of others after using violent games for a short period.

As Lengersdorff et al. highlight, however, the tightly controlled nature of this lab-based study may limit the generalization of the findings to other demographics or more typical video game use. For example, it remains unclear if the same results would emerge in people of different genders or those already drawn to violent games. The relatively short gaming period used in the study may also not accurately represent the habits of habitual gamers, who, on average, engage in gaming for about 16 hours a week over many years (Clement, 2021).

Nevertheless, the findings of Lengersdorff et al. align with accumulating evidence that playing violent video games has, by itself, little to no substantial impact on emotional and social functioning (Ferguson et al., 2020; Kühn et al., 2019). Although these studies do not imply that consuming this type of media is never problematic, they do suggest it can be a part of a healthy lifestyle. More than two decades after the release of GTA III, it may be time to move beyond the moral panic and the simplistic assumption that violent video games are inherently damaging. Future scientific research should aim to delineate the specific circumstances under which this type of media may contribute to psychological distress and antisocial behaviours without neglecting the idea that it might, in some cases, offer positive benefits to players (Etchells, 2019).

References

  1. Book
    1. Etchells P
    (2019)
    Lost in a Good Game: Why We Play Video Games and What They Can Do for Us
    Icon Books.

Article and author information

Author details

  1. Nicolas Roy

    Nicolas Roy is in the École de Psychologie, Université Laval and the Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Québec, Canada

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0008-8437-1875
  2. Michel-Pierre Coll

    Michel-Pierre Coll is in the École de Psychologie, Université Laval and the Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Québec, Canada

    For correspondence
    michel-pierre.coll@psy.ulaval.ca
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1475-5522

Publication history

  1. Version of Record published:

Copyright

© 2024, Roy and Coll

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,366
    views
  • 207
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Roy
  2. Michel-Pierre Coll
(2024)
Empathy: Exploring the impact of violence in video games
eLife 13:e94949.
https://doi.org/10.7554/eLife.94949

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.