Empathy: Exploring the impact of violence in video games

Playing a violent game for a few weeks did not alter neural and behavioral responses to the pain of others in inexperienced male gamers.
  1. Nicolas Roy
  2. Michel-Pierre Coll  Is a corresponding author
  1. École de Psychologie, Université Laval, Canada
  2. Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Canada

The release of Grand Theft Auto III in 2001 marked a turning point in the public discussion around video games (McLaughlin, 2008). With graphics more lifelike than ever, the game allowed players to act as criminals free to roam a city and commit senseless acts of violence against its population. Inevitably, social and research questions were raised regarding how this type of media could impact social and emotional wellbeing, in particular in the young men who form most of the gaming community. How would playing highly realistic games that allow the gratuitous murder and exploitation of others impact their psychological functioning?

This question has been notoriously difficult to answer scientifically, and it remains harshly debated (Devilly et al., 2023; Bushman and Anderson, 2021). Indeed, both real world observations and lab-based experiments have limitations when trying to assess how gaming may impact emotional, neural and behavioral mechanisms. Observational studies, which rely on measuring these processes without influencing them, are confounded by the fact that violent games tend to attract individuals who already have specific personality and social profiles (Braun et al., 2016). In contrast, experimental work is restricted by practical considerations; in the laboratory, participants can only be exposed to games for short periods, for example. It has also been hindered by inadequate study design, with experiments featuring control conditions that fail to effectively isolate violent content, or recruiting participants who have extensive experience with violent games. Now, in eLife, Claus Lamm and colleagues at the University of Vienna and Karolinska Institutet – including Lukas Lengersdorff as first author – report having designed an experimental study that overcomes many of these limitations (Lengersdorff et al., 2023).

The team recruited 89 young men with little gaming experience and no previous exposure to Grand Theft Auto V (GTA V). Half the participants were assigned to play a normal version of the game and incentivized to kill as many people as possible; the other half accessed a modified version of GTA V devoid of all violent content and got rewarded for taking pictures of other characters. Both groups played for seven hours over two weeks in a supervised lab setting. In addition, the participants’ neural and behavioral responses to images of people in pain or in emotionally charged situations were measured at the start and the end of the study, with Lengersdorff et al. using well-established fMRI and behavioral approaches to measure empathy and emotional reactivity (Singer et al., 2004).

The results showed that the two groups showed no neural or behavioural differences in the response to the distress of others. Additionally, statistical analyses using Bayesian techniques further suggested that playing a violent or non-violent version of the game had no effect on empathy for pain or emotional reactivity. Overall, these analyses provide solid evidence that men with little gaming experience do not get desensitised to the emotions of others after using violent games for a short period.

As Lengersdorff et al. highlight, however, the tightly controlled nature of this lab-based study may limit the generalization of the findings to other demographics or more typical video game use. For example, it remains unclear if the same results would emerge in people of different genders or those already drawn to violent games. The relatively short gaming period used in the study may also not accurately represent the habits of habitual gamers, who, on average, engage in gaming for about 16 hours a week over many years (Clement, 2021).

Nevertheless, the findings of Lengersdorff et al. align with accumulating evidence that playing violent video games has, by itself, little to no substantial impact on emotional and social functioning (Ferguson et al., 2020; Kühn et al., 2019). Although these studies do not imply that consuming this type of media is never problematic, they do suggest it can be a part of a healthy lifestyle. More than two decades after the release of GTA III, it may be time to move beyond the moral panic and the simplistic assumption that violent video games are inherently damaging. Future scientific research should aim to delineate the specific circumstances under which this type of media may contribute to psychological distress and antisocial behaviours without neglecting the idea that it might, in some cases, offer positive benefits to players (Etchells, 2019).


  1. Book
    1. Etchells P
    Lost in a Good Game: Why We Play Video Games and What They Can Do for Us
    Icon Books.

Article and author information

Author details

  1. Nicolas Roy

    Nicolas Roy is in the École de Psychologie, Université Laval and the Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Québec, Canada

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0008-8437-1875
  2. Michel-Pierre Coll

    Michel-Pierre Coll is in the École de Psychologie, Université Laval and the Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Québec, Canada

    For correspondence
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1475-5522

Publication history

  1. Version of Record published: January 16, 2024 (version 1)


© 2024, Roy and Coll

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 668
    Page views
  • 34
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Roy
  2. Michel-Pierre Coll
Empathy: Exploring the impact of violence in video games
eLife 13:e94949.

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    David O'Reilly, Ioannis Delis
    Tools and Resources

    The muscle synergy is a guiding concept in motor control research that relies on the general notion of muscles ‘working together’ towards task performance. However, although the synergy concept has provided valuable insights into motor coordination, muscle interactions have not been fully characterised with respect to task performance. Here, we address this research gap by proposing a novel perspective to the muscle synergy that assigns specific functional roles to muscle couplings by characterising their task-relevance. Our novel perspective provides nuance to the muscle synergy concept, demonstrating how muscular interactions can ‘work together’ in different ways: (1) irrespective of the task at hand but also (2) redundantly or (3) complementarily towards common task-goals. To establish this perspective, we leverage information- and network-theory and dimensionality reduction methods to include discrete and continuous task parameters directly during muscle synergy extraction. Specifically, we introduce co-information as a measure of the task-relevance of muscle interactions and use it to categorise such interactions as task-irrelevant (present across tasks), redundant (shared task information), or synergistic (different task information). To demonstrate these types of interactions in real data, we firstly apply the framework in a simple way, revealing its added functional and physiological relevance with respect to current approaches. We then apply the framework to large-scale datasets and extract generalizable and scale-invariant representations consisting of subnetworks of synchronised muscle couplings and distinct temporal patterns. The representations effectively capture the functional interplay between task end-goals and biomechanical affordances and the concurrent processing of functionally similar and complementary task information. The proposed framework unifies the capabilities of current approaches in capturing distinct motor features while providing novel insights and research opportunities through a nuanced perspective to the muscle synergy.

    1. Computational and Systems Biology
    Ron Sender, Elad Noor ... Yuval Dor
    Research Article

    Cell-free DNA (cfDNA) tests use small amounts of DNA in the bloodstream as biomarkers. While it is thought that cfDNA is largely released by dying cells, the proportion of dying cells' DNA that reaches the bloodstream is unknown. Here, we integrate estimates of cellular turnover rates to calculate the expected amount of cfDNA. By comparing this to the actual amount of cell type-specific cfDNA, we estimate the proportion of DNA reaching plasma as cfDNA. We demonstrate that <10% of the DNA from dying cells is detectable in plasma, and the ratios of measured to expected cfDNA levels vary a thousand-fold among cell types, often reaching well below 0.1%. The analysis suggests that local clearance, presumably via phagocytosis, takes up most of the dying cells' DNA. Insights into the underlying mechanism may help to understand the physiological significance of cfDNA and improve the sensitivity of liquid biopsies.