Flowering: Keeping it cool

A well-established model for how plants start the process of flowering in periods of cold weather may need revisiting.
  1. Vy Nguyen
  2. Iain Searle  Is a corresponding author
  1. Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Australia

The timing of flowering is one of the most important transitions during the life of a plant. Synchronising the flowering period with warmer temperatures enhances the reproductive success of a plant (and its impact on pollinators). To do so, plants must be able to sense cold temperatures, distinguish between short- and long-term periods of cold, and remember when these changes take place. This requires a complex interplay between internal regulators and environmental cues (Simpson and Dean, 2002; Wellmer and Riechmann, 2010).

In some plants, such as the model plant Arabidopsis thaliana, prolonged periods of cold lasting several weeks are required to initiate flowering via a process known as vernalisation. During this time, a gene called Flowering Locus C (FLC), which acts as a brake to flowering, gets switched off by epigenetic processes that stably hold the gene in the off position long after the vernalisation period (Michaels and Amasino, 1999; Sheldon et al., 1999; Michaels and Amasino, 2000; Whittaker and Dean, 2017).

Several decades of intensive research using a wide range of techniques has led to a well-established model for how the flowering block imposed by FLC is regulated. A long, non-coding RNA, called COOLAIR, is thought to play an important role in this model. Since COOLAIR is an antisense RNA with a complementary sequence of nucleotides to FLC, it is assumed to be an ideal candidate for suppressing the expression of this gene. Now, in eLife, Ilha Lee and colleagues – including Myeongjune Jeon and Goowon Jeong as joint first authors – report new results that challenge this theory (Jeon et al., 2023).

To better understand the role of COOLAIR in vernalisation, the researchers – who are based at the Seoul National University, the Chinese Academy of Sciences, and the Peking University Institute of Advanced Agricultural Sciences – did a combination of molecular, genetic and physiology experiments before, during and after vernalisation in A. thaliana plants and cells to explore the role of COOLAIR and some DNA transcription factors, known as CBFs, in vernalisation.

In a search for factors involved in the early stages of the vernalisation process, Jeon et al. focussed on the cold signal transduction that regulates the transcription of COOLAIR. The results revealed that the CBFs are required for COOLAIR transcription (Figure 1). CBF proteins have been known to play a central role for plants to increase their tolerance to freezing but they had not been linked to the vernalisation response before. Moreover, the CBF-binding DNA sequence in the COOLAIR promoter (a critical sequence for transcription) is conserved amongst different plant species, suggesting the CBF-COOLAIR regulator mechanism evolved some significant time ago.

Vernalisation in Arabidopsis thaliana.

Some plants need a prolonged period of cold lasting several weeks to permit flowering in a process known as vernalisation. In A. thaliana, a gene called FLC stops plants from flowering during winter. During this time, FLC is highly expressed (black bars), but this activity is reduced after vernalisation. Jeong et al. show that early in the vernalisation process, CBF proteins (dark blue) bind to conserved DNA sequences (DREs) at the end of FLC to transcribe a long non-coding RNA, called COOLAIR (light blue). During vernalisation, the amount of CBFs increases, while COOLAIR levels decrease. The upstream regulator of CBF transcription remains unknown (shown as question mark).

In genetically modified plants that only had inactive forms of the genes coding for CBFs, cold-induced expression of COOLAIR was severely impaired. In modified plants with overactive CBF-coding genes, COOLAIR levels were high even when temperatures were warm. Unexpectedly, Jeon et al. found that these genetically modified plants were still able to go through vernalisation, even though they were unable to produce COOLAIR during the cold period. In addition, well described epigenetic histone modifications responsible for switching off the FLC gene remained unchanged before and after vernalisation in the genetically modified plants. This suggest that neither COOLAIR, nor the CBF transcription factors that transcribe COOLAIR, are required to induce vernalisation.

Jeon et al. used an elegant combination of genetic and molecular experiments to paint a compelling picture that suggests that the previously well-established vernalisation model requires updating. This is also in accordance with recent research, suggesting a similar theory (Helliwell et al., 2011; Luo et al., 2019). There are only a few genes where an in-depth analysis of how they are controlled has improved our overall knowledge of gene regulation. These include the trp operon genes in Escherichia coli, which regulate synthesis of the essential amino acid tryptophan and the beta-globin locus in mammals, famous for their involvement in the transport of oxygen (Yanofsky, 1981; Myers et al., 1986). It is clear the FLC locus also deserves a spot on this list.

References

Article and author information

Author details

  1. Vy Nguyen

    Vy Nguyen is in the Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, Australia

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7369-7457
  2. Iain Searle

    Iain Searle is in the Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, Australia

    For correspondence
    iain.searle@adelaide.edu.au
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4306-9756

Publication history

  1. Version of Record published:

Copyright

© 2023, Nguyen and Searle

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 631
    views
  • 76
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vy Nguyen
  2. Iain Searle
(2023)
Flowering: Keeping it cool
eLife 12:e86885.
https://doi.org/10.7554/eLife.86885

Further reading

    1. Chromosomes and Gene Expression
    Felix Y Zhou, David P Waterman ... James E Haber
    Research Article

    Cells evoke the DNA damage checkpoint (DDC) to inhibit mitosis in the presence of DNA double-strand breaks (DSBs) to allow more time for DNA repair. In budding yeast, a single irreparable DSB is sufficient to activate the DDC and induce cell cycle arrest prior to anaphase for about 12–15 hr, after which cells ‘adapt’ to the damage by extinguishing the DDC and resuming the cell cycle. While activation of the DNA damage-dependent cell cycle arrest is well understood, how it is maintained remains unclear. To address this, we conditionally depleted key DDC proteins after the DDC was fully activated and monitored changes in the maintenance of cell cycle arrest. Degradation of Ddc2ATRIP, Rad9, Rad24, or Rad53CHK2 results in premature resumption of the cell cycle, indicating that these DDC factors are required both to establish and maintain the arrest. Dun1 is required for the establishment, but not the maintenance, of arrest, whereas Chk1 is required for prolonged maintenance but not for initial establishment of the mitotic arrest. When the cells are challenged with two persistent DSBs, they remain permanently arrested. This permanent arrest is initially dependent on the continuous presence of Ddc2, Rad9, and Rad53; however, after 15 hr these proteins become dispensable. Instead, the continued mitotic arrest is sustained by spindle assembly checkpoint (SAC) proteins Mad1, Mad2, and Bub2 but not by Bub2’s binding partner Bfa1. These data suggest that prolonged cell cycle arrest in response to 2 DSBs is achieved by a handoff from the DDC to specific components of the SAC. Furthermore, the establishment and maintenance of DNA damage-induced cell cycle arrest require overlapping but different sets of factors.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Marius Regin, Yingnan Lei ... Claudia Spits
    Research Article

    About 70% of human cleavage stage embryos show chromosomal mosaicism, falling to 20% in blastocysts. Chromosomally mosaic human blastocysts can implant and lead to healthy new-borns with normal karyotypes. Studies in mouse embryos and human gastruloids showed that aneuploid cells are eliminated from the epiblast by p53-mediated apoptosis while being tolerated in the trophectoderm. These observations suggest a selective loss of aneuploid cells from human embryos, but the underlying mechanisms are not yet fully understood. Here, we investigated the cellular consequences of aneuploidy in a total of 125 human blastocysts. RNA-sequencing of trophectoderm cells showed activated p53 pathway and apoptosis proportionate to the level of chromosomal imbalance. Immunostaining corroborated that aneuploidy triggers proteotoxic stress, autophagy, p53-signaling, and apoptosis independent from DNA damage. Total cell numbers were lower in aneuploid embryos, due to a decline both in trophectoderm and in epiblast/primitive endoderm cell numbers. While lower cell numbers in trophectoderm may be attributed to apoptosis, aneuploidy impaired the second lineage segregation, particularly primitive endoderm formation. This might be reinforced by retention of NANOG. Our findings might explain why fully aneuploid embryos fail to further develop and we hypothesize that the same mechanisms lead to the removal of aneuploid cells from mosaic embryos.