Rescuable sleep and synaptogenesis phenotypes in a Drosophila model of O-GlcNAc transferase intellectual disability

  1. Ignacy Czajewski
  2. Bijayalaxmi Swain
  3. Jiawei Xu
  4. Laurin McDowall
  5. Andrew T Ferenbach
  6. Daan MF van Aalten  Is a corresponding author
  1. University of Dundee, United Kingdom
  2. Aarhus University, Denmark

Abstract

O-GlcNAcylation is an essential intracellular protein modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Recently, missense mutations in OGT have been linked to intellectual disability, indicating that this modification is important for the development and functioning of the nervous system. However, the processes that are most sensitive to perturbations in O-GlcNAcylation remain to be identified. Here, we uncover quantifiable phenotypes in the fruit fly Drosophila melanogaster carrying a patient-derived OGT mutation in the catalytic domain. Hypo-O-GlcNAcylation leads to defects in synaptogenesis and reduced sleep stability. Both these phenotypes can be partially rescued by genetically or chemically targeting OGA, suggesting that a balance of OGT/OGA activity is required for normal neuronal development and function.

Data availability

Code used to generate Figure 2 - Supplement 1 A and C is deposited in GitHub (https://github.com/IggyCz/WBplotProfile). All the data used in our manuscript are provided as source data files for each figure.Information regarding novel genotypes and phenotypes is included in the manuscript, and will be deposited in FlyBase. Newly generated genotypes are available upon request.

Article and author information

Author details

  1. Ignacy Czajewski

    Division of Molecular, Cell and Developmental Biology, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1661-5806
  2. Bijayalaxmi Swain

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiawei Xu

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Laurin McDowall

    Division of Molecular, Cell and Developmental Biology, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew T Ferenbach

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Daan MF van Aalten

    2Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    For correspondence
    daan@mbg.au.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1499-6908

Funding

Wellcome Trust (110061)

  • Daan MF van Aalten

Novo Nordisk Foundation Center for Basic Metabolic Research (NNF21OC0065969)

  • Daan MF van Aalten

National Centre for the Replacement Refinement and Reduction of Animals in Research (T001682)

  • Ignacy Czajewski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2024, Czajewski et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 186
    views
  • 43
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ignacy Czajewski
  2. Bijayalaxmi Swain
  3. Jiawei Xu
  4. Laurin McDowall
  5. Andrew T Ferenbach
  6. Daan MF van Aalten
(2024)
Rescuable sleep and synaptogenesis phenotypes in a Drosophila model of O-GlcNAc transferase intellectual disability
eLife 13:e90376.
https://doi.org/10.7554/eLife.90376

Share this article

https://doi.org/10.7554/eLife.90376

Further reading

    1. Developmental Biology
    Dena Goldblatt, Basak Rosti ... David Schoppik
    Research Article

    Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of principles of neural development.

    1. Developmental Biology
    Martina Jabloñski, Guillermina M Luque ... Mariano G Buffone
    Research Article

    Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after acrosomal exocytosis (AE) and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Midpiece contraction occurs in a subset of cells that undergo AE, and live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network’s role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility.