Microglia: Maestros of anesthesia

Microglia regulate anesthesia by altering the activity of neurons in specific regions of the brain via a purinergic receptor.
  1. Romeesa Khan
  2. Rodney M Ritzel  Is a corresponding author
  1. MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, United States
  2. Department of Neurology, McGovern Medical School, University of Texas, United States

Before undergoing a surgical procedure, patients are often given a general anesthetic to put them in a state of unconsciousness. It is widely accepted that anesthetic drugs work by suppressing the activity of neurons. However, more recent studies suggest that non-neuronal cells are also involved, particularly immune cells known as microglia, which monitor the central nervous system to ensure healthy brain function is maintained. Impaired cognition following anesthesia, such as delirium and delayed recovery, have been observed in older patients. Given that microglia are known to play a role in neuroinflammation and age-related neurodegeneration, they may be key to the side effects of general anesthesia (Fan et al., 2020).

Previous studies have shown that microglia are more active and perform more surveillance in anesthetized mice (Stowell et al., 2019; Liu et al., 2019). Furthermore, differences in neuronal activity between awake and anesthetized mice correspond to shifts in both microglial function and calcium signaling (Umpierre et al., 2020). This work revealed how the signaling mechanisms that occur in microglia differ in the awake versus anesthetized state, suggesting that microglia help regulate the general anesthesia response. However, it is still poorly understood how microglia molecularly control anesthesia. Now, in eLife, Yousheng Shu (Fudan University), Bo Peng (Fudan and Nantong Universities) and colleagues – including Yang He, Taohui Liu and Quansheng He as joint first authors – report new observations showing how microglia and neurons interact in specific brain regions during general anesthesia (He et al., 2023).

First, the team investigated how depleting microglia affected the induction of and emergence from general anesthesia. To ablate the microglia, they fed mice a diet containing the compound PLX5622 which inhibits a receptor (known as CSF1R) that microglia need to survive. The PLX5622-fed mice were slower to lose the ability to flip over and stand on their feet (known as the loss of righting reflex) compared to mice given a control diet, suggesting delayed induction of anesthesia. Additionally, the mice also recovered this ability (recovery of righting reflex) faster, indicating earlier emergence from anesthesia. To establish this effect as being microglia-specific, and not due to equivalent cells outside the brain, He et al. fed mice a CSF1R inhibitor that cannot cross the blood-brain-barrier and enter the central nervous system. The rates of induction of and emergence from general anesthesia were similar to those observed in the control group, suggesting that both effects are mediated specifically by microglia. These findings were further validated by recording electrical activity in the brain and muscle, which also indicated a late induction and early emergence from anesthesia in microglia-ablated mice.

Next, He et al. looked at how microglia affect different regions of the brain during general anesthesia using the expression levels of c-Fos as a marker for neuronal activity. This revealed that microglia depletion significantly reduced neuronal activity in the parts of the brain activated by anesthesia, but increased activity in the regions activated during emergence. This region-dependent regulation was also demonstrated through a series of experiments measuring whole-cell recordings of neuronal activity. These findings build upon previous studies showing microglia to modulate neuronal activity in a region-specific manner (Badimon et al., 2020).

Finally, to better understand how microglia affect neuronal function, He et al. knocked out a microglial receptor, known as P2Y12R, that regulates neuronal crosstalk and activity when activated by purines, such as ADP (Yu et al., 2019). P2Y12R knockout was achieved in two different ways: using a selective antagonist to block ligand binding and inhibit downstream signaling, and by inactivating the gene that codes for the receptor in microglial cells through gene editing. Both methods delayed the induction of anesthesia and led to an accelerated right of recovery reflex. To validate this finding, He et al. transplanted the mice with bone marrow cells that mature into P2Y12R-negative microglia and replace the healthy microglia of the central nervous system (Xu et al., 2020). This repopulation led to similar outcomes to those observed in P2Y12R-knockout conditions.

Activation of P2Y12R enhances the level of calcium inside microglia (Jiang et al., 2017). Further experiments increasing or decreasing the amount of intracellular calcium altered how quickly the mice were induced into and emerged from an anesthetic state. These data convincingly show how disruption of purinergic receptor signaling, and consequently microglial calcium signaling, are essential for regulating anesthesia in mice (Figure 1).

How microglia affect induction of and emergence from anesthetics.

The brains of wild type mice (WT MG; top panel) are populated with immune cells known as microglia (MG; blue). Administration of general anesthetic leads to mice no longer being able to flip over and stand on their feet, known as the loss of righting reflex (LORR). This ability is then restored – known as the recovery of righting reflex (RORR) – as the mice emerge from the anesthesia (dashed line). He et al. found that depleting microglia from the brain (middle panel) caused the loss of righting reflex to occur later, while accelerating the time it took to recover the reflex. This effect was also observed when the brains of the mice were populated with microglia lacking the receptor P2Y12R (red; bottom panel), suggesting that microglia regulate the anesthetic state through this receptor.

Image credit: Figure created using Biorender.com.

The findings of He et al., alongside another recent publication which also revealed microglia regulate general anesthesia through P2Y12R (Cao et al., 2023), provide a new perspective of how immune cells regulate anesthesia. Although previously overlooked, roles for other non-neuronal cells in regulating a state of unconsciousness seem almost inevitable. Surely the vast network of neurons that are suppressed during anesthesia must significantly affect other supporting cells in the brain?

A remaining question, that is also clinically relevant, is how the elevated activity of microglia in older brains affects post-operative delirium in aging populations. A focus on microglia, which are undeniably important for maintaining brain function, may inform better practices in the clinical administration of general anesthesia. This could lead to a more comprehensive understanding of the communication between neurons and microglia within the brain.

References

Article and author information

Author details

  1. Romeesa Khan

    Romeesa Khan is in the MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences and the Department of Neurology, McGovern Medical School, University of Texas, Houston, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4129-1612
  2. Rodney M Ritzel

    Rodney M Ritzel is in the Department of Neurology, McGovern Medical School, University of Texas, Houston, United States

    For correspondence
    Rodney.M.Ritzel@uth.tmc.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0160-2930

Publication history

  1. Version of Record published: January 18, 2024 (version 1)

Copyright

© 2024, Khan and Ritzel

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 681
    views
  • 79
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romeesa Khan
  2. Rodney M Ritzel
(2024)
Microglia: Maestros of anesthesia
eLife 13:e95064.
https://doi.org/10.7554/eLife.95064

Further reading

    1. Neuroscience
    Yangang Li, Xinyun Zhu ... Yueming Wang
    Research Article

    In motor cortex, behaviorally relevant neural responses are entangled with irrelevant signals, which complicates the study of encoding and decoding mechanisms. It remains unclear whether behaviorally irrelevant signals could conceal some critical truth. One solution is to accurately separate behaviorally relevant and irrelevant signals at both single-neuron and single-trial levels, but this approach remains elusive due to the unknown ground truth of behaviorally relevant signals. Therefore, we propose a framework to define, extract, and validate behaviorally relevant signals. Analyzing separated signals in three monkeys performing different reaching tasks, we found neural responses previously considered to contain little information actually encode rich behavioral information in complex nonlinear ways. These responses are critical for neuronal redundancy and reveal movement behaviors occupy a higher-dimensional neural space than previously expected. Surprisingly, when incorporating often-ignored neural dimensions, behaviorally relevant signals can be decoded linearly with comparable performance to nonlinear decoding, suggesting linear readout may be performed in motor cortex. Our findings prompt that separating behaviorally relevant signals may help uncover more hidden cortical mechanisms.

    1. Immunology and Inflammation
    2. Neuroscience
    Nicolas Aubert, Madeleine Purcarea ... Gilles Marodon
    Research Article

    CD4+CD25+Foxp3+ regulatory T cells (Treg) have been implicated in pain modulation in various inflammatory conditions. However, whether Treg cells hamper pain at steady state and by which mechanism is still unclear. From a meta-analysis of the transcriptomes of murine Treg and conventional T cells (Tconv), we observe that the proenkephalin gene (Penk), encoding the precursor of analgesic opioid peptides, ranks among the top 25 genes most enriched in Treg cells. We then present various evidence suggesting that Penk is regulated in part by members of the Tumor Necrosis Factor Receptor (TNFR) family and the transcription factor Basic leucine zipper transcription faatf-like (BATF). Using mice in which the promoter activity of Penk can be tracked with a fluorescent reporter, we also show that Penk expression is mostly detected in Treg and activated Tconv in non-inflammatory conditions in the colon and skin. Functionally, Treg cells proficient or deficient for Penk suppress equally well the proliferation of effector T cells in vitro and autoimmune colitis in vivo. In contrast, inducible ablation of Penk in Treg leads to heat hyperalgesia in both male and female mice. Overall, our results indicate that Treg might play a key role at modulating basal somatic sensitivity in mice through the production of analgesic opioid peptides.