Immune Response: Investigating the role of vitamin D in asthma

Results in mice suggest that vitamin D reduces the symptoms of asthma by controlling an immune response that leads to inflammation of the airways.
  1. Siddhant Sharma
  2. Mayank Garg  Is a corresponding author
  1. Department of Biology, Ashoka University, India
  2. Simons Ashoka Fellowship Program, Trivedi School of Biosciences, Ashoka University, India
  3. Koita Centre for Digital Health, Trivedi School of Biosciences, Ashoka University, India

Vitamin D deficiency has burgeoned into a major public health concern, exacerbated by dietary habits and pollution among other factors (Cui et al., 2023). While vitamin D is well known to be important for maintaining healthy bones, it has also been linked with various immune disorders, including asthma.

Supplements of vitamin D are being increasingly used to treat immune-related conditions. However, it remains unclear precisely how vitamin D is able to improve the outcome of these disorders (Scragg, 2018). Now, in eLife, Scott Weiss, Ardu Halu and co-workers – including Ayşe Kiliç as joint first author with Halu – report how vitamin D regulates an immune response that is a major contributor to asthma (Kiliç et al., 2023).

First, the team – who are based at Brigham and Women’s Hospital and Harvard Medical School, and institutes in Germany, Japan, Russia, and the United States – revisited the findings of a clinical trial called the Vitamin D Antenatal Asthma Reduction Trial (VDAART). In the trial, pregnant women who had a history of Asthma or allergies (or whose partner, the other biological parent, had a similar history), were given low or high doses of vitamin D during pregnancy. Analyses of the data found that higher vitamin D supplementation did not significantly reduce asthma in the offspring (Litonjua et al., 2016; Litonjua et al., 2020). However, a more nuanced reanalysis – which adjusted for baseline vitamin D levels to account for factors such as dietary intake – reported a reduced risk of asthma in the offspring of women who received a higher dose of vitamin D during pregnancy (Wolsk et al., 2017).

Kiliç et al. set out to find the genetic underpinnings of this protective effect, focusing their attention on chromosome 17, which contains regions strongly associated with asthma and other immune diseases (Bansal et al., 2021). Across chromosome 17 are sites where the receptor for vitamin D (known as VDR) can bind. Bioinformatic analysis revealed that some of these VDR binding sites overlapped with genetic variants associated with diseases triggered by the immune response mediated by T helper type 2 cells. These immune cells (known as Th2 for short) are a subset of white blood cells which respond proactively to invading pathogens like helminths, as well as recurrent exposures. Th2 cells act by producing inflammatory mediators as well as by modulating the activity of other cells in the immune system. They are also activated by allergens, such as mites and pollens, which can lead to allergic inflammation and disorders like asthma.

A detailed exploration of these overlapping regions suggested that VDR can trigger a cascade that regulates genes involved in the Th2 immune response. This genetic regulation could either promote or repress the Th2 response, depending on other genetic variants present in the proximity.

With a hypothesis established, the researchers tested their findings in mice which had been exposed to extracts from house dust mites to mimic the asthma phenotype (Figure 1A). They found that mice deficient in vitamin D or lacking VDRs displayed a more severe phenotype. Further experiments revealed that house dust mite exposure also caused the Th2 cells to express higher levels of VDR. When these Th2 cells were exposed to calcitriol (the active form of vitamin D), the VDRs bound to the calcitriol and migrated from the cytosol into the nucleus (Figure 1B).

The vitamin D receptor and its role in inflammation of the airways.

(A) To mimic the symptoms of asthma, Kiliç et al. treated a lab-grown strain of mice (known as C57Bl/6) with extracts from house dust mites (HDM). This activated a group of immune cells called T helper type 2 (Th2; green) in the lungs of the mice, leading to inflammation of their airways. (B) Kiliç et al. found that exposure to dust mites also caused the Th2 cells to produce more vitamin D receptors (purple). When the cells were treated with calcitriol, the active form of vitamin D (blue circles with black lines), the receptors migrated from the cytosol to the nucleus. Once there, the receptor can regulate the expression of genes involved in the Th2 response, including the gene Ikzf3 which suppresses the inflammatory response triggered by Th2 cells.

© 2024, BioRender Inc. Figure 1 was created using BioRender.com, and is published under a CC BY-NC-ND license. Further reproductions must adhere to the terms of this license.

These findings suggest that VDR acts like a lock waiting for its key. Access to the key (vitamin D), and migration of the VDR into the nucleus, possibly unlocks the transcriptional regulation required to modulate the immune pathways. Furthermore, VDR expression was contingent upon baseline vitamin D levels, suggesting that this vitamin has both a preventive and therapeutic potential. Kiliç et al. also found that one of the genes that VDR regulates (called Ikzf3) is a major factor in suppressing the Th2 immune response (Figure 1B). This effect is likely mediated through the STAT signaling axis, which is a critical pathway regulating inflammation (Hu et al., 2021).

The study by Kiliç, Halu, Weiss and colleagues sheds light on how vitamin D offers protective benefits against asthma. However, several pathophysiological pathways can lead to the characteristic airway inflammation associated with asthma (Moore and Bleecker, 2014). Subgroup analysis during clinical trials, along with targeted exploration of relevant biomarkers, could help identify who would benefit most from vitamin D supplements. The latest findings also underscore the importance of vitamin D in a wider sense, as the Th2 response is associated with several other chronic inflammatory diseases.

That being said, it is essential to be mindful of the broader biological role of vitamin D, as it influences both the innate and the adaptive immune system via a number of different cell types (Colotta et al., 2017). This complexity may be why scientific literature on vitamin D is marred by contradictory findings: for instance, a previous study has even shown loss of VDR to be protective against asthma (Wittke et al., 2004). However, this complexity should not deter researchers from trying to develop a deeper mechanistic understanding of vitamin D effects. Such an understanding could, in the future, enable personalized treatment strategies for individuals with immune disorders such as asthma.

References

Article and author information

Author details

  1. Siddhant Sharma

    Siddhant Sharma is in the Department of Biology, Ashoka University, Sonipat, India

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1768-1802
  2. Mayank Garg

    Mayank Garg is on the Simons Ashoka Fellowship Program and at the Koita Centre for Digital Health, Trivedi School of Biosciences, Ashoka University, Sonipat, India

    For correspondence
    mayank.garg@ashoka.edu.in
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1919-1818

Publication history

  1. Version of Record published:

Copyright

© 2024, Sharma and Garg

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 565
    views
  • 51
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Siddhant Sharma
  2. Mayank Garg
(2024)
Immune Response: Investigating the role of vitamin D in asthma
eLife 13:e97031.
https://doi.org/10.7554/eLife.97031

Further reading

    1. Genetics and Genomics
    Anna Herrmannová, Jan Jelínek ... Leoš Shivaya Valášek
    Research Article

    Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes. To comprehensively study the effects of eIF3 remodeling, we contrasted the impact of eIF3d, eIF3e or eIF3h depletion on the translatome of HeLa cells using Ribo-seq. Depletion of eIF3d or eIF3e, but not eIF3h reduced the levels of multiple components of the MAPK signaling pathways. Surprisingly, however, depletion of all three eIF3 subunits increased MAPK/ERK pathway activity. Depletion of eIF3e and partially eIF3d also increased translation of TOP mRNAs that encode mainly ribosomal proteins and other components of the translational machinery. Moreover, alterations in eIF3 subunit stoichiometry were often associated with changes in translation of mRNAs containing short uORFs, as in the case of the proto-oncogene MDM2 and the transcription factor ATF4. Collectively, perturbations in eIF3 subunit stoichiometry exert specific effect on the translatome comprising signaling and stress-related transcripts with complex 5’ UTRs that are implicated in homeostatic adaptation to stress and cancer.

    1. Cell Biology
    2. Genetics and Genomics
    Priyanka Das, Alejandro Aballay, Jogender Singh
    Research Article

    Calcineurin is a highly conserved calcium/calmodulin-dependent serine/threonine protein phosphatase with diverse functions. Inhibition of calcineurin is known to enhance the lifespan of Caenorhabditis elegans through multiple signaling pathways. Aiming to study the role of calcineurin in regulating innate immunity, we discover that calcineurin is required for the rhythmic defecation motor program (DMP) in C. elegans. Calcineurin inhibition leads to defects in the DMP, resulting in intestinal bloating, rapid colonization of the gut by bacteria, and increased susceptibility to bacterial infection. We demonstrate that intestinal bloating caused by calcineurin inhibition mimics the effects of calorie restriction, resulting in enhanced lifespan. The TFEB ortholog, HLH-30, is required for lifespan extension mediated by calcineurin inhibition. Finally, we show that the nuclear hormone receptor, NHR-8, is upregulated by calcineurin inhibition and is necessary for the increased lifespan. Our studies uncover a role for calcineurin in the C. elegans DMP and provide a new mechanism for calcineurin inhibition-mediated longevity extension.