Protein Kinases: Redox takes control

A study of two enzymes in the brain reveals new insights into how redox reactions regulate the activity of protein kinases.
  1. Iván Plaza-Menacho  Is a corresponding author
  1. Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Spain

For decades reactive oxygen species were considered to be the by-products of cell damage. However, more recently these unstable molecules have been shown to play a role in cell signaling as secondary messengers that transfer electrons between proteins.

This exchange of electrons, known as a redox modification, typically takes place on a specific set of amino acids within the protein. Previous work showed that the removal of an electron (known as oxidation) from the amino acid cysteine can alter the structure and function of protein kinases (enzymes that phosphorylate molecules and have an essential role in cell signaling; Garrido Ruiz et al., 2022). As well as adding phosphoryl groups to other proteins, some kinases need to be phosphorylated themselves to switch on their catalytic activity (Cuesta-Hernández et al., 2023). However, much less is known about how cysteine oxidation modulates the activity and structure of protein kinases, and the systematic effect this has on cell signaling.

Now, in eLife, Natarajan Kannan and colleagues – including George Bendzunas and Dominic Byrne as joint first authors – report how cysteine oxidation controls two kinases found in the brain (Bendzunas et al., 2024). The team showed that the catalytic activity of these two enzymes – called AMPK-related Brain-selective kinases 1 (BRSK1) and 2 (BRSK2) – is directly regulated through reversible oxidation. This redox reaction takes place at cysteine residues situated at key structural and functional sites within the catalytic domain (the part of the protein that causes the enzymatic reaction).

In particular, Bendzunas et al. (who are based at the University of Georgia and the University of Liverpool) identified two pairs of cysteine residues in both BRSK1 and BRSK2, which form a bridge between sulfur atoms when oxidized. These connections, known as disulfide bonds, help maintain the structure and shape of proteins. When the team mutated the cysteine residues in vitro, this increased the catalytic activity of the kinases. It also led to higher amounts of phosphorylated Tau, the primary substrate of BRSK1 and BRSK2, in cells.

Molecular modelling and simulations revealed that oxidation of one of the four identified cysteines (which resides on a motif that defines the end of the activation loop) destabilizes bonds required to allosterically activate the catalytic domain. Taken together, these findings suggest that oxidation of the four cysteines, and subsequent formation of the two intramolecular disulfide bridges, represses the activity of BRSK1 and BRSK2.

Many other protein kinases have cysteine residues situated in similar locations within their structure. It is therefore possible that redox regulation of disulfide bridges may be a widespread mechanism for controlling protein kinase activity and signaling.

In a previous study led by Kannan, roughly 10% of protein kinases present in humans were hypothesized to be subjected to redox-dependent regulation (Byrne et al., 2020). This includes key members of the CAMK, AGC, and AGC-like families, which each contain a cysteine residue that lies adjacent to the phosphorylation site in the activation loop. The transmembrane receptor EGFR also has a cysteine residue in another nearby location, which enhances catalytic activity when oxidized (Truong et al., 2016). However, it is unclear how the redox state of these cysteine residues modulates the activity of kinases. As well as altering the conformational landscape of the activation loop itself, redox modifications may enhance the non-catalytic properties of the enzyme, or regulate intermolecular interactions and oligomerization (Cuesta-Hernández et al., 2023).

Cysteine residues have also been found in other parts of the kinase structure. Comprehensive mapping revealed a group of cysteine residues that lie in or adjacent to the binding site for ATP, which are collectively referred to as the ‘cysteinome’ (Chaikuad et al., 2018). Furthermore, the protein kinases cAPK, c-Src and LRRK2 among others, have all been shown to contain two cysteine residues which alter catalytic activity following redox modifications (Humphries et al., 2005; Humphries et al., 2002; Heppner et al., 2018; Trilling et al., 2024). Many of the motifs that contain cysteine residues also have a phosphorylation site, but it is poorly understood how phosphorylation impacts the oxidation of cysteines (Kemper et al., 2022).

These redox-dependent molecular switches provide therapeutic advantages as they can be used to block the activity of kinases. Drugs targeting cysteine residues, known as covalent inhibitors, were initially designed for members of the EGFR family (Tsou et al., 2005). Since then, more than forty covalent inhibitors have been approved by the US Food and Drug Administration (FDA). Most of these target residues in the cysteinome, particularly a cysteine at the front site of the kinase in the F2 position (Chaikuad et al., 2018). However, other cysteine hotspots are yet to be fully explored (Yen-Pon et al., 2018; Chen et al., 2022; Zhang et al., 2016), including the cysteine disulfide bonds identified by Bendzunas et al. which could be important therapeutic targets.

The work of Bendzunas et al. and others highlights how significant redox biology is for understanding protein kinase function and pharmacology. However, the regulatory power of cysteine oxidation is often underappreciated, and the effect it has on most human kinases remains unknown. Further exploration of the cysteines in protein kinases, together with more high-resolution structural data, will help to bridge this gap and may lead to the discovery of more drug targets for covalent inhibitors.

References

Article and author information

Author details

  1. Iván Plaza-Menacho

    Iván Plaza-Menacho leads the Kinases, Protein Phosphorylation and Cancer Group in the Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain

    For correspondence
    iplaza@cnio.es
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4666-9431

Publication history

  1. Version of Record published: June 20, 2024 (version 1)

Copyright

© 2024, Plaza-Menacho

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 395
    views
  • 43
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Iván Plaza-Menacho
(2024)
Protein Kinases: Redox takes control
eLife 13:e99765.
https://doi.org/10.7554/eLife.99765

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.